University Scheduling Optimization Using Integer Programming: A Case Study
Abstract
Keywords
Full Text:
PDFReferences
[1] Ibrahim, S., Abdullah, MH, & Rahman, NA (2022). A general mathematical model for university courses timetabling: Implementation to a public university in Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 18 (1), 1–10. https://doi.org/10.11113/mjfas.v18n1.2408
[2] Babaei. H., Karimpour. J., and Hadidi. A., “A Survey of Approaches for University Course Timetabling Problem”, Computers & Industrial Engineering, vol. 86, pp. 43-59, 2015. [Online]. Available , https://doi.org/10.1016/j.cie.2014.11.010
[3] Fong, CW, Asmuni, H., & McCollum, B. 2015. A hybrid swarm-based approach to university timetabling. IEEE Transactions on Evolutionary Computation , vol. 19 , pp. 870–884. https://doi.org/10.1109/TEVC.2015.2411741
[4] Cruz-Rosales, M.H., Cruz-Chávez, M.A., Alonso-Pecina, F., Peralta-Abarca, J. d. C., Ávila Melgar, E.Y., Martínez-Bahena, B., & Enríquez-Urbano, J. 2022. Metaheuristic with cooperative processes for the university course timetabling problem. Applied Sciences, vol. 12, pp. 542. https://doi.org/10.3390/app12020542
[5] Kampke, EH, Scheideger, LM, Mauri, GR, & Boeres, MCS 2019. A network flow based construction for a grasp sa algorithm to solve the university timetabling problem. In Computational science and its applications–ICCSA 2019: Proceedings of the 19th international conference, part III (pp. 215–231). Springer https://doi.org/10.1007/978-3-030-24302-9_16
[6] Guzman, G. A., Martínez, C., & Pacheco, J. (2015). An integer linear programming model for a university timetabling problem considering time windows and consecutive periods. Journal of Applied Operational Research , vol. 6(3), pp. 159– 167. https://doi.org/10.48287/2310-5070.2023.121
[7] Ceschia, RM Rosati, A. Schaerf, P. Smet, G. Vanden Berghe, E. Zanazzo, The i Integrated Healthcare Timetabling Competition 2024 – Problem description and rules, in: Proceedings of the 14 th International Conference on the Practice and Theory of Automated Timetabling, PATAT 2024, 2024, vol. 25, pp. 52 – 65. https://doi.org/10.1016/j.ordal.2025.200481
[8] Lü, Z., & Hao, J. K. (2010). Adaptive Tabu Search for Course Timetabling. European Journal of Operational Research, vol. 200(1), pp. 235-244. https://doi.org/10.1016/j.ejor.2008.12.007
[9] Chen, R. M. (2013). Solving University Course Timetabling Problems Using Constriction Particle Swarm Optimization with Local Search. Algorithms, 6(2), 227–244. https://doi.org/10.3390/a6020227
[10] Rudová, H., Müller, T., & Murray, K. (2011). Complex university course timetabling. Journal of Scheduling, vol. 14(2), pp. 187–207. https://doi.org/10.1007/s10951-010-0171-3
[11] Asmuni, H., Burke, E.K., & McCollum, B. (2020). A practical three-phase ILP approach for solving the examination timetabling problem. International Transactions in Operational Research, vol. 27 (2), pp. 924–944. https://doi.org/10.1111/itor.12471
[12] Al-Shihri, F., & Al-Thoheir, A. (2007). A mixed integer programming model for university course scheduling. Journal of King Saud University – Computer and Information Sciences , vol. 19(2), pp. 53–62. https://doi.org/10.1016/j.jksuci.2007.02.002
[13] Lewis, R. 2008. A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum, vol 30, pp. 167–190. https://doi.org/10.1007/s00291-007-0097-0
[14] Rappos, E., Barták, R., & Burke, E.K. (2022). A mixed-integer programming approach for solving university course timetabling problems. Journal of Scheduling, vol. 25, pp. 391–404. https://doi.org/10.1007/s10951-021-00715-5
[15] McCollum, B. (2007). A perspective on bridging the gap between theory and practice in university timetabling. Practice and Theory of Automated Timetabling VI, Lecture Notes in Computer Science, vol. 3867, pp. 3–23. https://doi.org/10.1007/978-3-540-77345-0_1
[16] Antony E. Phillips, HW, Matthias Ehrgott and David M. Ryan, Integer programming methods for large-scale practical classroom assignment problems. Computers & Operations Research, 2014. https://doi.org/10.1016/j.cor.2014.07.012
[17] Daskalaki, S., Birbas, T., & Housos, E. (2004). An Integer Programming Formulation for A Case Study in University Timetabling. European Journal of Operational Research , vol. 153(1), pp. 117–135. https://doi.org/10.1016/S0377- 2217(03)00103-6
[18] Hutomo, AR, Fitrananda, A., Marshadiany, A., Prikarti, GP, & Imah, EM (2011). Implementation of Integer Linear Programming Algorithm for Room Scheduling Information System at Faculty of Computer Science, University of Indonesia. Information Systems Journal, vol. 7(1), pp. 25–33. https://media.neliti.com/media/publications/131947-ID-none.pdf
[19] Feng, X., Lee, Y., & Moon, I. 2017. An integer program and a hybrid genetic algorithm for the university timetabling problem. Optimization Methods & Software , vol. 32 , pp. 625–649. https://doi.org/10.1080/10556788.2016.1233970
[20] MJF Souza, N. Maculan, LS Ochi, A grasp-tabu search algorithm for solving school timetabling problems, in: Maurício GC Resende; Jorge Pinho de Sousa. (Org.). METAHEURISTICS: Computer Decision Making. Dordrech: Kluwer Academic Publishers, 2004, pp. vol 86, pp. 659–672. https://doi.org/10.1007/978-1- 4757-4137-7_31
[21] Perera, WAUD, & Lanel, G.H.J. (2016). A Model to Optimize University Course Timetable Using Graph Coloring and Integer Linear Programming. IOSR Journal of Mathematics, vol. 12(5), pp. 13–18. https://doi.org/10.9790/5728- 1205031318
[22] Tripathy, A. (1984). School timetabling A case in large binary integer linear programming. Management Science, vol. 30(12), pp. 1473–1489. https://doi.org/10.1287/mnsc.30.12.1473
[23] Hossain, S.I., et al. (2019). Optimization of university course scheduling problem using particle swarm optimization with selective search. Expert Systems with Applications, vol. 127, pp. 9–24. https://doi.org/10.1016/j.eswa.2019.02.026
[24] Bakir, M., & Aksop, C. (2008). A 0-1 integer programming approach to a university timetabling problem. Hacettepe Journal of Mathematics and Statistics, vol. 7(1), pp. 41– 55. https://dergipark.org.tr/en/pub/hujms/issue/7771/531004
[25] Wahid, A., & Hussin, H. (2015). Hybrid harmony search algorithm for the course timetabling problem. In 2015 international conference on science and engineering technology (ICSET) (pp. 1–5). IEEE. https://doi.org/10.1007/s10479-010-0769-z
[26] T. Müller, H. Rudová, Z. Müllerová, Real-world university course timetabling at the International Timetabling Competition 2019, J. Sched. 2024 21p. vol 28, pp. 247-267. https://doi.org/10.1007/s10951-023-00801-w
[27] Brandt, J., et al. (2022). An integrated patient-to-room and nurse-to-patient assignment problem in hospitals. Journal of Scheduling. https://doi.org/10.48550/arXiv.2309.10739
[28] Fong, C.W., Asmuni, H., & McCollum, B. 2015. A hybrid swarm-based approach to university timetabling. IEEE Transactions on Evolutionary Computation , vol. 19, pp. 870–884. https://doi.org/10.1109/TEVC.2015.2411741
[29] Demeester, P., & Goossens, K. (2009). The examination timetabling problem: A new integer programming approach. Computers & Operations Research, vol. 36(6), pp. 1845– 1856. https://doi.org/10.1016/j.cor.2008.06.013
[30] Süre, T. (2015). Mixed Integer Linear Programming approach for the course timetabling problem: A real case study. Proceedings of the International Conference on Industrial Engineering and Operations Management (IEOM), Paris. https://doi.org/10.1109/IEOM.2015.7093735
DOI: https://doi.org/10.18860/cauchy.v11i1.37815
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Gayus Simarmata, Rajainal Saragih, Anil Hakim Syofra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






