Enhancing Spatio-Temporal PCA with FASTMCD for Climate Comfort Assessment

Agus Yarcana, Henny Pramoedyo, Suci Astutik

Abstract


This study presents a robust formulation of the Spatio-Temporal Principal Component Analysis (STPCA) by integrating the Fast Minimum Covariance Determinant (FASTMCD) estimator into the spatio-temporal decomposition framework. Unlike classical STPCA—which constructs the spatio-temporal matrix from sample-based means and is therefore highly sensitive to extreme observations—the proposed STPCA–FASTMCD replaces the classical mean and scatter structure with robust estimates derived from FASTMCD. The method incorporates functional Fourier-based temporal smoothing and an inverse power–distance spatial weight matrix to better capture the underlying spatio-temporal patterns. Monthly climate data (thermal comfort, cloud cover, rainfall, and wind speed) from 24 monitoring locations in Bali during 2010–2019 are analyzed. Performance is evaluated using mean-shift analysis, eigenvalue-stability assessment, and eigenvector perturbation diagnostics. The classical STPCA produces inflated and unstable leading components, with the first eigenvalue reaching 63.36, whereas STPCA–FASTMCD reduces this value to 37.79 and yields smoother, more coherent spatial loading patterns. The robust STPC1 reveals a clear thermal–wind variability mode, enhancing the interpretability of spatial gradients relevant to climate comfort. Overall, the proposed formulation substantially improves the stability and climatic relevance of dominant spatio-temporal modes, providing a more reliable foundation for climate comfort assessment in Bali.


Keywords


Bali Climate; Climate Comfort; Eigenvalue Stability; FASTMCD; Robust Estimation; Spatio-Temporal PCA

Full Text:

PDF

References


I. S. Report, “Summary for Policymakers of the Intergovernmental Panel on Climate Change,” 2023. [Online]. Available: https://www.ipcc.ch/report/ar6/syr/

M. Tang, “Comparing the ‘ Tourism Climate Index ’ and ‘ Holiday Climate Index ’ in Major European Urban Destinations,” 2013, [Online]. Available: https://uwspace.uwaterloo.ca/handle/10012/7638

D. Scott, M. Rutty, B. Amelung, and M. Tang, “An inter-comparison of the Holiday Climate Index (HCI) and the Tourism Climate Index (TCI) in Europe,” Atmosphere (Basel)., vol. 7, no. 6, 2016, doi: 10.3390/atmos7060080.

K. Sumaja, I. K. M. Satriyabawa, S. Maharani, and W. A. Mustika, “The Climate Comfort and Risk Assessment for Tourism in Bali, Indonesia,” Springer Proc. Phys., vol. 290, no. July, pp. 545–553, 2023, doi: 10.1007/978-981-19-9768-6_50.

L. R. Z. Dini and Sobirin, “Tingkat Kenyamanan Iklim di Pulau Bali Berdasarkan Tourism Climate Index,” Ind. Res. Work. Natl. Semin., pp. 678–684, 2017, [Online]. Available: https://jurnal.polban.ac.id/index.php/proceeding/article/view/602/457

E. D. Lusiana, S. Astutik, Nurjannah, and A. B. Sambah, “Identifying key factors determining dynamics of environmental characteristics in Lesser Sunda island, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1191, no. 1, p. 12004, May 2023, doi: 10.1088/1755-1315/1191/1/012004.

M. Krzyśko, P. Nijkamp, W. Ratajczak, W. Wołyński, and B. Wenerska, “Spatio-temporal principal component analysis,” Spat. Econ. Anal., vol. 19, no. 1, pp. 8–29, 2024, doi: 10.1080/17421772.2023.2237532.

P. J. Rousseeuw and K. Van Driessen, “A fast algorithm for the minimum covariance determinant estimator,” Technometrics, vol. 41, no. 3, pp. 212–223, 1999, doi: 10.1080/00401706.1999.10485670.

D. I. Purnama and P. R. Sihombing, “Perbandingan Analisis Komponen Utama Dan Robust Pca (Robpca),” J. Bayesian J. Ilm. Stat. dan Ekon., vol. 1, no. 1, pp. 67–76, 2021, doi: 10.46306/bay.v1i1.7.

H. Ghorbani, “Mahalanobis Distance and Its Application for Detecting Multivariate Outliers,” Facta Univ. Ser. Math. Informatics, p. 583, 2019, doi: 10.22190/fumi1903583g.

U. Barudžija, J. Ivšinović, and T. Malvić, “Selection of the Value of the Power Distance Exponent for Mapping with the Inverse Distance Weighting Method—Application in Subsurface Porosity Mapping, Northern Croatia Neogene,” Geosci., vol. 14, no. 6, 2024, doi: 10.3390/geosciences14060155.

D. W. S. Wong and F. Wang, “1.10 - Spatial Analysis Methods,” in Comprehensive Geographic Information Systems, B. Huang, Ed., Oxford: Elsevier, 2018, pp. 125–147. doi: https://doi.org/10.1016/B978-0-12-409548-9.09598-1.

N. Fat’Ha and H. T. Sutanto, “Identifikasi Autokorelasi Spasial Pada Pengangguran Di Jawa Timur Menggunakan Indeks Moran,” MATHunesa J. Ilm. Mat., vol. 8, no. 2, pp. 89–92, 2020, doi: 10.26740/mathunesa.v8n2.p89-92.

M. Benko, W. Härdle, and A. Kneip, “Common functional principal components,” Ann. Stat., vol. 37, no. 1, pp. 1–34, 2009, doi: 10.1214/07-AOS516.

L. F. Ichsari et al., “Studi Komparasi Hasil Pengolahan Pasang Surut Dengan 3 Metode (Admiralty, Least Square Dan Fast Fourier Transform) Di Pelabuhan Malahayati, Banda Aceh,” Indones. J. Oceanogr., vol. 2, no. 2, pp. 121–128, 2020, doi: 10.14710/ijoce.v2i2.7985.

P. Septiawan and S. Nurdiati, “Analisis Empirical Orthogonal Function (Eof) Dan Transformasi Fourier Pada Sinyal Curah Hujan Indonesia,” Semin. Mat. Dan Pendidik. Mat., no. December, pp. 179–186, 2017, doi: 10.31227/osf.io/8e2f3.

S. Stahlschmidt, W. K. Härdle, and H. Thome, “An Application of Principal Component Analysis on Multivariate Time-stationary Spatio-temporal Data,” Spat. Econ. Anal., vol. 10, no. 2, pp. 160–180, 2015, doi: 10.1080/17421772.2015.1023339.

M. Krzyśko, P. Nijkamp, W. Ratajczak, W. Wołyński, A. Wojtyła, and B. Wenerska, “A novel Spatio-temporal principal component analysis based on Geary’s contiguity ratio,” Comput. Environ. Urban Syst., vol. 103, p. 101980, 2023, doi: 10.1016/j.compenvurbsys.2023.101980.

S. D. A. Larasati, K. Nisa, and N. Herawati, “Robust Principal Component Trimmed Clustering of Indonesian Provinces Based on Human Development Index Indicators,” J. Phys. Conf. Ser., vol. 1751, no. 1, p. 12021, Jan. 2021, doi: 10.1088/1742-6596/1751/1/012021.

R. N. M. Sanusi, D. R. S. Saputro, and R. Setiyowati, “Application of Robust Principal Component Analysis for Gross Regional Domestic Product of Provinces in Indonesia,” J. Phys. Conf. Ser., vol. 1776, no. 1, pp. 0–6, 2021, doi: 10.1088/1742-6596/1776/1/012056.

M. Hubert, P. J. Rousseeuw, and K. Vanden Branden, “ROBPCA: A new approach to robust principal component analysis,” Technometrics, vol. 47, no. 1, pp. 64–79, 2005, doi: 10.1198/004017004000000563.

J. Fan, W. Wang, and Y. Zhong, “An ∞ eigenvector perturbation bound and its application to robust covariance estimation,” J. Mach. Learn. Res., vol. 18, pp. 1–42, 2018, [Online]. Available: https://www.jmlr.org/papers/volume18/16-140/16-140.pdf




DOI: https://doi.org/10.18860/cauchy.v11i1.37866

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Agus Yarcana, Henny Pramoedyo, Suci Astutik

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.