Simulation Study The Using of Bayesian Quantile Regression in Nonnormal Error
Abstract
Keywords
Full Text:
PDFReferences
Benoit, D.F and Van den Poel, D. 2017. BayesQR: A Bayesian Approach to Quantile Regression.Journal of Statistical Software, 76(7), 1-32.
Box, G.E.P and Tiao, G.C. 1973. Bayesian Inference In Statistical Analysis. AddisionWesley Company. Inc : Philippines.
Davino, C., Furno, M. and Vistocco, D. 2014. Quantile Regression Theory and Applications. John Wiley and Sons, Ltd.
Koenkar,R and Basset,G.Jr. 1978. Regression Quantiles. Econometrica,46: 33-50
Ntzoufras, I. 2009. Bayesian Modeling Using WINBugs. John Wiley Sons, Inc: New Jersey.
Walpole, R.E and Myers, R. H. 1995. Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan Edisi ke-4. ITB : Bandung.
Yang, Y., Wang, H.J., He, X. 2015. Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood. International Statistical Review, 84(3), 327344.
Yu, K. 2003. Quantile regression: Aplications and Current Research Area. The Statistician, 52 (3): 331-350.
Yu, K. and Moyeed, R. 2001. Bayesian Quantile Regression. Statistics & Probability Letters, 54(4), 437-447.
Yu, K., and Zhang, J. 2005. A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics-Theory and Methods, 34(9-10), 1867-1879.
DOI: https://doi.org/10.18860/ca.v5i3.5633
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Catrin Muharisa, Ferra Yanuar, Dodi Devianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.