A Discrete Numerical Solution of The SIR Model with Horizontal and Vertical Transmission
Abstract
Keywords
Full Text:
PDFReferences
Bürli, C et al. (2018). Mathematical Analysis Of The Transmission Dynamics Of The Liver fluke,
Opisthorchis Viverrini. Journal of Theoretical Biology, 439(2018): 181-194.
Santillana, M. et al. (2018). Relatedness of The Incidence Decay with Exponential
Adjustment (IDEA) Model, “Farr's Law” and SIR Compartmental Difference Equation Models. Infectious Disease Modelling, 3(2018): 1-12.
Harianto, J., Suparwati, T. (2017). Local Stability Analysis of an SVIR Epidemic Model. CAUCHY –Jurnal Matematika Murni dan Aplikasi, 5(1)(2017): 20–28.
Dinnullah, R.N., Fayeldi, T. (2018). A Discrete Numerical Scheme of Modified Leslie-Gower With Harvesting Model. CAUCHY –Jurnal Matematika Murni dan Aplikasi, 5(2)(2018): 42-47.
Kiouach, D., Sabbar, Y. (2018). Stability and Threshold of a Stochastic SIRS Epidemic Model with Vertical Transmission and Transfer from Infectious to Susceptible Individuals. Discrete Dynamics in Nature and Society, 2018: 1-13.
Jing, W., Jin, Z., Zhang, J., (2018). An SIR Pairwise Epidemic Model With Infection Age And Demography. Journal of Biological Dynamics, 12(1): 486-508.
Meng, X., Chen, L., (2008). The dynamics of a new SIR epidemic model concerning
pulse vaccination strategy. Applied Mathematics and Computation, 197(2008): 582–597.
DOI: https://doi.org/10.18860/ca.v6i1.6413
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Trija Fayeldi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.