On Square-Integrable Representations of A Lie Group of 4-Dimensional Standard Filiform Lie Algebra
Abstract
In this paper, we study irreducible unitary representations of a real standard filiform Lie group with dimension equals 4 with respect to its basis. To find this representations we apply the orbit method introduced by Kirillov. The corresponding orbit of this representation is genereric orbits of dimension 2. Furthermore, we show that obtained representation of this group is square-integrable. Moreover, in such case , we shall consider its Duflo-Moore operator as multiple of scalar identity operator. In our case that scalar is equal to one.
Keywords
Full Text:
PDFReferences
A. Hadjer and A. Makhlouf, “Index of Graded Filiform and Quasi Filiform Lie Algebras,” no. May 2014, 2012.
A. A. Kirillov, “Lectures on the Orbit Method, Graduate Studies in Mathematics,” Am. Math. Soc., vol. 64, 2004.
A. . Kirillov, “Unitary representations of nilpotent Lie groups,” Uspekhi Mat.Nauk, vol. 17, pp. 57--110, 1962.
R. Berndt, Representation of linear groups. An introduction based on examples from physics and number theory. Wiesbaden: Vieweg, 2007.
J. . Lee, Introduction to smooth manifolds, Graduate Text in Mathematics,. New York: Springer-Verlag, 2003.
M. Duflo and C. C. Moore, “On the Regular Representation of a nonunimodular Locally Compact,” J. Funct. Anal., vol. 21, pp. 209–243, 1976.
A. . Carey, “Square-integrable representation of nonunimodular groups,” Bull.Austral.Math.Soc, vol. 15, pp. 1--12, 1976.
A. Grossmann, J. Morlet, and T. Paul, “Transform associated to square-integrable group of representations I,” J.Math.Phys, vol. 26, pp. 2473--2479, 1985.
A. Grossmann, J. Morlet, and T. Paul, “Trsansform associated to square-integrable group representations .II. Examples,” Ann.Inst.H.Poincare Phys.Theor, vol. 45, pp. 293--309, 1986.
L. J. Corwin and F. . Greenleaf, Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples,. Cambridge: Cambridge University Press, 1990.
DOI: https://doi.org/10.18860/ca.v6i2.9094
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Edi Kurniadi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.