CULTURAL LOSS IN TOURISM TEXT TRANSLATION: A COMPARISON BETWEEN CHATGPT AND GOOGLE TRANSLATE

Dimas Adika, Anita Rusjayanti, Noprival Noprival, Ardianna Nuraeni

Abstract


In the digital age, AI has become essential in translation, providing fast solutions for overcoming language barriers. This is particularly important for the accurate translation of cultural elements within tourism promotional texts, which is crucial for achieving effective destination marketing. This study examines the translation result of ChatGPT and Google Translate, advanced AI-powered translation tools, in translating a tourism promotional text from the Jadesta Ministry of Tourism and Creative Economy, Indonesia. In detail, the study aims to answer any cultural aspects that are lost in the translation resulting from ChatGPT and Google Translate and to explore to what extent translation results favor source language orientation (foreignization) or target language orientation (domestication). Using cultural categorization from Chen (2024) to address translation loss and the concept of translation techniques from Molina and Albir (2002), a qualitative approach was applied to compare the translations of cultural references from ChatGPT and Google Translate. The steps of the study involved selecting a suitable tourism promotional text that contained culturally significant terms. The text was then translated using both ChatGPT and Google Translate, and the translations were evaluated based on their ability to convey cultural meaning. Expert validation was sought to ensure accuracy, followed by a qualitative analysis of the types and instances of cultural loss in each translation, leading to insights about the limitations of both tools in translating cultural terms. The findings reveal significant translation loss in terms of historical background, aesthetic imagery, local customs, and religion. Both ChatGPT and Google Translate show a cultural loss in translating local customs. Local custom terms are deeply ingrained in the source culture and often lack direct equivalents in the target language, making them particularly vulnerable to cultural loss during translation. Then, both tools predominantly employ pure borrowing techniques to preserve their cultural source and literal translation to ensure accuracy at the linguistic level but often overlook cultural and contextual values. In addition, both tools demonstrate a preference for source language orientation (foreignization). However, ChatGPT performs better than Google Translate due to its lower percentage of foreignization compared to Google Translate.

Keywords


ChatGPT; cultural loss; Google Translate; translation;

Full Text:

PDF

References


Adika, D. (2017). Kajian terjemahan klausa kompleks proyeksi pada cerita-cerita rakyat dwibahasa di Indonesia. In Sulistyono, Y., Susiati, S., Fatimah, N., & Prastiwi, Y. (Eds.), The 1st International Conference on Language, Literature, and Teaching (ICOLLIT 1). Revitalizing Literacy Culture (pp. 632-645). Universitas Muhammadiyah Surakarta.

Ahyar, J., Ibrahim, M Y., & Muzir, M. (2023). Semantic and pragmatic linguistic aspects in translation. Journal of Indonesian Social Science (JISS), 4(07), 595-600. https://doi.org/10.59141/jiss.v4i07.841

Aliyah., Lukita, C., Pangilinan, G A., Chakim, M H R., & Saputra, D B. (2023). Examining the impact of Artificial Intelligence and Internet of Things on smart tourism destinations: A comprehensive study. Aptisi Transactions on Technopreneurship (ATT), 5(2sp), 135-145. https://doi.org/10.34306/att.v5i2sp.332

Budiharjo, B., Nuraeni, A., Saptaningsih, N., Murti, B. D., & Rusjayanti, A. (2022). Persuasion in tourism promotion bilingual texts: The importance of syntactic forms and choices. Leksema: Jurnal Bahasa dan Sastra, 7(1), 1–12. https://doi.org/10.22515/ljbs.v7i1.4419

Cai, M. (2022). Translation of culture-loaded words and cross-cultural communication from the perspective of domestic games. SHS Web of Conferences, 148, 01025-01028. https://doi.org/10.1051/shsconf/202214801025

Chen, Y. (2022). Translation methods of business English in a cross-cultural context. Academic Journal of Humanities & Social Sciences, 5(1), 70-72. https://doi.org/10.25236/ajhss.2022.050112

Chen, S., Mansor, N. S., Zhou, T., & Lin, Y. (2024). Exploring cultural losses in the tourism website translation: A case study of Trip. com. Theory and Practice in Language Studies, 14(3), 729-739. https://doi.org/10.17507/tpls.1403.13

Carvalho, I., & Sheppard, V. (2021). Memorable experiences in language travel.Tourism and Hospitality Research, 22(2), 149-163. https://doi.org/10.1177/14673584211013866

Dora N, f., Adika, D., & Widyasari. (2024). Translating the untranslatable: DeepL and ChatGPT on academic idioms. Linguistik Terjemahan Sastra (LINGTERSA), 5(2), 85-93. https://doi.org/10.32734/lingtersa.v5i2.15086

Fusté‐Forné, F., Ginés-Ariza, P., & Noguer-Juncà, E. (2021). Food in slow tourism: The creation of experiences based on the origin of products sold at Mercat del Lleó (Girona). Heritage, 4(3), 1995-2008. https://doi.org/10.3390/heritage4030113

Gan, H., Li, Y., & Ya-nan, S. (2021). Research on the integration and development of culture and tourism based on wireless communication and virtual reality technology.Wireless Communications and Mobile Computing, 2021, Article ID 83220926. https://doi.org/10.1155/2021/8322092 (Retraction published 2023, Wireless Communications and Mobile Computing, 2023, Article ID 9832468, page 1

Gao, Y., Wang, R., & Hou, F. (2023). How to design translation prompts for ChatGPT: An empirical study. Cornell University. https://doi.org/10.48550/arxiv.2304.02182

Gay, L., Mills, G. E., & Airasian, P. W. (2012). Educational research: Competencies for analysis and applications (10th ed.). Pearson Education, inc.

Hariri, W. (2023). Unlocking the potential of ChatGPT: A comprehensive exploration of its applications, advantages, limitations, and future directions in natural language processing. Cornell University. https://doi.org/10.48550/arxiv.2304.02017

Koo, C., Xiang, Z., Gretzel, U., & Sigala, Μ. (2021). Artificial intelligence (AI) and robotics in travel, hospitality and leisure.Electron Markets, 31(3), 473-476. https://doi.org/10.1007/s12525-021-00494-z

Marmoah, S., Adika, D., Haryati, S., & Yurni, Y. (2024). Leveraging AI to optimize English Academic Writing (EAW) in Intelligent Decision Support Systems (IDSS). Jurnal Ilmiah Universitas Batanghari Jambi, 24(2), 1265-1270. http://dx.doi.org/10.33087/jiubj.v24i2.5483

Martawijaya, A P., Syihabuddin., Sudana, D., & Sutedi, D. (2021). Cultural terms translation in Japan-Indonesia diplomacy content on social media Instagram. In Striełkowski, W., Black, J. M., Butterfield, S. A., Chang, C., Dumanig, F. P., Al-Mabuk, R., Urban, M., & Webb, S. (Eds.), Advances in social sciences, education, and humanities research, volume 599. Proceedings of the tenth International Conference on Languages and Arts (ICLA 2021) (pp. 105-113). Atlantis Press. https://doi.org/10.2991/assehr.k.211129.018

Mich, L., & Garigliano, R. (2023). ChatGPT for e-Tourism: A technological perspective.Information Technology & Tourism, 25(1), 1-12. https://doi.org/10.1007/s40558-023-00248-x

Molina, L., & Albir, A. (2002). Translation techniques revisited: A dynamic and functionalist approach. Meta: Journal des traducteurs, 47(4), 498-512. DOI: 10.7202/008033ar

Newmark, P. (1988). A textbook of translation. Prentice Hall.

Nunan, D. (1992). Research methods in language learning. Cambridge University Press

Nwike, C C., Oladimeji, O., & Chinyere, O H. (2021). Subtitling as a didactic tool for relating exactness of information and cultural preservation: The Igbo language mediascape example. Theory and Practice in Language Studies, 11(8), 901-909. https://doi.org/10.17507/tpls.1108.05

Pukiene, A., Brazauskaite-Zubaviciene, I., Prodanovic, M., Piirman, M., & Jäärats, K. (2024, June 20-21)). Exploring translation mistakes in tourism messages through human and AI perspectives. In International Conference The Future of Education14th edition 2024. https://doi.org/10.26352/I620_2384-9509

Rahim, A. (2017). Pemukiman-pemukiman kuno di daerah aliran sungai Batanghari. Jurnal Ilmiah Universitas Batanghari Jambi, 17(3), 16-26. http://dx.doi.org/10.33087/jiubj.v17i3.398

Romaniuk, O M., & Zapotichna, R. (2020). The notion of translation strategy: The main principles. Scientific Bulletin of The International Humanitarian University, 45(1) 125-128. https://doi.org/10.32841/2409-1154.2020.45-1.30

Rusjayanti, A. (2015). Analisis terjemahan kalimat yang merepresentasikan tuturan penolakan dan rangkaiannya (refusal set) pada novel ‘The Deception Point’ dan dampaknya terhadap kualitas terjemahan. [Thesis]. Universitas Sebelas Maret Institutional Repository. https://digilib.uns.ac.id/dokumen/detail/50232

Samala, N., Katkam, B S., Bellamkonda, R S., & Rodriguez, R V. (2022). Impact of AI and robotics in the tourism sector: A critical insight. Journal of Tourism Futures, 8(1), 73-87. https://doi.org/10.1108/jtf-07-2019-0065

Sampaio, H A., Correia, A I., Melo, C., Brazão, L., & Shehada, S. (2020). Analyzing tourism agents’ perceptions of the use of artificial intelligence. In de Carvalho, J., Rocha, Á., Liberato, P., & Peña, A. (Eds.), Advances in Tourism, Technology and Systems (pp. 245-254). Springer Nature. https://doi.org/10.1007/978-981-33-4256-9_22

Sari, L. P. (2019). Tari semayo sebagai simbol budaya bebiduk pada masyarakat rantau panjang kecamatan Tabir Kab. Merangin Prov. Jambi. Laga-Laga: Jurnal Seni Pertunjukan, 5(2), 271-279. https://journal.isipadangpanjang.ac.id/index.php/Lagalaga/article/view/928/479

Sulaiman, M. (2016) The misunderstood concept of translation in tourism promotion.The International Journal of Translation and Interpreting Research, 8(1), 53-68. https://doi.org/10.12807/ti.108201.2016.a04

Titscher, S., Meyer, M., Wodak, R., & Vetter, E. (2000). Methods of text and discourse analysis. SagePublications.

Tuo, Y., Ning, L., & Zhu, A. (2021). How Artificial Intelligence will change the future of tourism industry: The practice in China. In Wörndl, W., Koo, C., Stienmetz, J.L. (Eds), Information and Communication Technologies in Tourism 2021 (pp. 83-94). Springer International Publishing. https://doi.org/10.1007/978-3-030-65785-7_7

Venuti, L. (1995). The translator's invisibility: A history of translation. Routledge.

Wei, W., & Lin, Q. (2020). Research on intelligent tourism town based on AI technology. Journal of Physics: Conference Series, 1575(2020), 012039-012043. https://doi.org/10.1088/1742-6596/1575/1/012039

Xiang, Z., Shin, S., & Li, N. (2019). Online tourism-related text: A perspective article. Tourism Review, 75(1), 324-328. https://doi.org/10.1108/tr-06-2019-0246

Xuelian, D. (2023). Standardization of tourism cultural publicity translation based on the new era background. Frontier in Educational Research, 6(19), 57-69.https://doi.org/10.25236/fer.2023.061910

Zhang, X. (2021). A study of cultural context in Chinese-English translation. Region - Educational Research and Reviews, 3(2), 11-14. https://doi.org/10.32629/rerr.v3i2.303




DOI: https://doi.org/10.18860/ling.v20i1.29687



Copyright (c) 2025 LiNGUA: Jurnal Ilmu Bahasa dan Sastra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Member of:

Crossref

Indexed by:

Dimension Google Scolar  Sinta Sinta   Journal TOCS     

Editorial Office:
Laboratory of Information and Publication, Faculty of Humanities
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: jurnallingua@gmail.com
Phone: (+62) 341 570872


Creative Commons License
LiNGUA by Laboratory of Information and Publication, Faculty of Humanities is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://ejournal.uin-malang.ac.id/index.php/humbud/index.