Ethnomathematics and creativity study in the construction of batik based on fractal geometry aided by GeoGebra
Abstract
This study aims to describe geometric objects that used by students on constructing fractal batik using Geogebra, procedure that used to construct fractal batik design, and students creativity on the process of constructing fractal batik. The qualitative descriptive research was applies including data collection, data separation, data analysis and conclusions. The research data were obtained from 97 students of tadris mathematics IAIN Kediri. The research results showed that fractal batik was constructed from a single geometric shape and combination of 2, 3, and 4 single geometric shapes through steps (a) made basic patterns using geometric shapes in Geogebra, (b) Made New Tools to perform repetitions (iteration), (c) Determined the type of transformation that used to repeat the basic patterns, and (d) Constructed geometric fractal batik. Based on the creativity indicators fluency, 3 types of geometric fractals can be obtained, namely (a) Fractals with Repetition and Enlargement (FPB), (b) Fractals with Repetition and Change Position (FPS), and (c) Fractals with Mix Repetition (FPC). Based on the flexibility indicator, there are 32 basic geometric shapes that develop basic patterns by applying 15 types of transformation consist of Single Transformation, Double Transformation, Triple Transformation and Quadruple Transformation. Meanwhile, on the originality indicator, P3 is the basic shape that has been mostly developed into geometric fractal batik which is a combination of equilateral triangles and squares.
Keywords
Full Text:
PDFReferences
Al Khalili Abdussalam, Amal. (2006). Mengembangkan Kreativitas Anak. Jakarta: Pustaka Al-Kautsar.
Alvani, A. (2016). Profil Kreativitas Siswa SMP dalam Menyelesaikan Soal tentang Bangun Ruang Sisi Datar Ditinjau dari Gaya Kognitif. Kreano, Jurnal Matematika Kreatif-Inovatif, 7(2), 171–178. (Juniora High School). https://doi.org/10.15294/kreano.v7i2.6437
Batik. (2020). In Wikipedia bahasa Indonesia, ensiklopedia bebas. Retrieved from https://id.wikipedia.org/w/index.php?title=Batik&oldid=17627249
Cindy J.Boyd, Jerry Cummins, Carol E. Malloy, John A. Carter, Alfinio Flores. (2008). Geometry. New York, NY: McGraw Hill Glencoe.
Direktur Jenderal Pendidikan Islam. (2018). Panduan Pengembangan Kurikulum PTKI Mengacu pada KKNI dan SN-Dikti. Retrieved from http://diktis.kemenag.go.id/NEW/file/dokumen/2815324462893281MFULL.pdf
Elah Nurlelah. (2009). Pengembangan Bahan Ajar Struktur Aljabar Berbasis Program Komputer dan Tugas Resitasi untuk Meningkatkan Kreativitas dan Daya Matematik Mahasiswa. Jurnal Pengajaran MIPA, 14(2), 1–22.
Elizabeth B. Hurlock. (1999). Perkembangan Anak Jilid 2 terj. Dr. Med. Meitasari Tjandrasa. Jakarta: Erlangga.
George Shouksmith. (1979). Intelligence, Creativity and Cognitive Style. New York, NY: Wiley Interscience, A Division of Jogn Wiley & Sons, Inc.
John W Creswell. (2014). Research Design: Qualitative, quantitative and Mixed Methods Approach (4th ed). Thousand Oaks, CA: SAGE Publications.
Juniati, D., & Budayasa, I. K. (2017). Developing Experiment-Based Teaching Materials of Fractal Geometry to Uograde Students; Competences. Jurnal Cakrawala Pendidikan, 36(1), 24–33. https://doi.org/10.21831/cp.v36i1.11660
Kusnati, K. (2018). Inovasi Pembelajaran Matematika Metode Rolling Question Untuk Meningkatkan Kreatifitas Dan Kemampuan Berfikir Siswa Di Kelas Vii Smpn 3 Ciawigebang Kabupaten Kuningan. Euclid, 5(1), 55–69. https://doi.org/10.33603/e.v5i1.706
Menristekdikti. (2017). Peraturan Menteri Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor 55 tahun 2017 tentang Standar Pendidikan Guru. Retrieved from https://bsnp-indonesia.org/wp-content/uploads/2017/09/permenristekdikti-nomor-55-tahun-2017.pdf
Michael Serra. (2008). Discovering Geometry: An Investigative Approach. Emeryville, CA: Key Curriculum Press.
Munawaroh, I. (2017). Pemanfaatan Teknologi Informasi Dan Komunikasi Untuk Menumbuhkan Kreativitas Dan Kemandirian Belajar. Retrieved from http://staffnew.uny.ac.id/upload/132310874/penelitian/PEMANFAATAN+TEKNOLOGI+INFORMASI+DAN+KOMUNIKASI+UNTUK+MENUMBUHKAN+KREATIVITAS+DAN+KEMANDIRIAN+BELAJAR+DI+SEKOLAH.pdf
Nisa, T. F. (2011). Pembelajaran Matematika Dengan Setting Model Treffinger Untuk Mengembangkan Kreativitas Siswa. PEDAGOGIA: Jurnal Pendidikan, 1(1), 35–48.
Patmalasari, D., Afifah, D. S. N., & Resbiantoro, G. (2017). Karakteristik Tingkat Kreativitas Siswa yang Memiliki Disposisi Matematis Tinggi dalam Menyelesaikan Soal Matematika. JIPM (Jurnal Ilmiah Pendidikan Matematika), 6(1), 30–38. https://doi.org/10.25273/jipm.v6i1.1509
Presiden Republik Indonesia. (2003). Undang-Undang Republik Indonesia Nomor 20 Tahun 2003 tentang Sistem Pendidikan Nasional. Retrieved from http://luk.staff.ugm.ac.id/atur/UU20-2003Sisdiknas.pdf
Rafiq Zulkarnaen. (2015). Pengaruh Model Eliciting Activities terhadap Kreativitas Matematis pada Siswa Kelas VIII pada Satu Sekolah di Kab.Kawarang. Infinity Journal, 4(1), 32–38. https://doi.org/10.22460/infinity.v4i1.p32-38
Robert W Olson. (1996). Seni Berpikir Kreatif: Sebuah Pedoman Praktis, terj. Alfonsus Samosir. Jakarta: Erlangga.
Robert W Weisberg. (2006). Expertise and Reason in Creative Thinking: Evidence from Case Studies and The Labpratory. In Creativity and Reason in Cognitive Development (pp. 7–42). Cambride: Cambride University Press.
Ron Larson, Laurie Boswell, Timothy D Kanold, Lee Stiff. (2007). Geometry. Boston, MA: McDougal Littell.
Setiawati, E. (2014). Mengembangkan Kemampuan Berpikir Logis, Kreatif, Dan Habits Of Mind Matematis Melalui Pembelajaran Berbasis Masalah: Eksperimen terhadap Siswa Madrasah Aliyah (Phd, Universitas Pendidikan Indonesia). Universitas Pendidikan Indonesia. Retrieved from http://repository.upi.edu
Supandi, S., Kusumaningsih, W., Ariyanto, L., Nurlaelah, E., & Turmudi, T. (2013). Pembelajaran Kalkulus Berbasis E-Learning Untuk Menumbuhkan Kreativitas dan Karakter Mahasiswa. Kreano, Jurnal Matematika Kreatif-Inovatif, 4(2), 126–130. https://doi.org/10.15294/kreano.v4i2.3131
Tatag Yuli Eko Siswono. (2008). Penjenjangan Kemampuan Berpikir Kreatif dan Identifikasi Tahap Berpikir Kreatif Peserta Didik dalam Memecahkan dan Mengajukan Masalah Matematika. Jurnal Pendidikan Matematika “Mathedu,” 2(1), 41–52.
Tatag Yuli Eko Siswono. (2018). Pembelajaran Matematika Berbasis Pengajuan dan Pemecahan Masalah. Bandung: Remaja Rosdakarya.
The Liang Gie. (2003). Teknik Berpikir Kreatif. Yogyakarta: Sabda Persada Yogyakarta.
Utami Munandar. (1999). Kreativitas dan Keberbakatan: Strategi Mewujudkan Potensi Kreatif dan Bakat. Jakarta: PT Gramedia Pustaka Utama.
Zainudin, M. (2014). Efektivitas Pembelajaran Berbasis Projek (Pbp) Terhadap Kreativitas Mahasiswa Pada Matakuliah Metodologi Penelitian. JIPM (Jurnal Ilmiah Pendidikan Matematika), 2(2), 15–24. https://doi.org/10.25273/jipm.v2i2.472
DOI: https://doi.org/10.18860/ijtlm.v5i1.10883
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Eka Sulistyawati
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
International Journal on Teaching and Learning Mathematicsis powered byOpen Journal Systems Department of Mathematics Education |
Information:
Address | : Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144 | ||
Phone/Fax | : (0341) 552398 | ||
Website | : ejournal.uin-malang.ac.id/index.php/ijtlm | ||
View Stats | : View IJTLM Stats | ||
: ijtlm@uin-malang.ac.id | |||
p-ISSN | : 2621-2188 | ||
e-ISSN | : 2621-2196 |
Indexed by :
International Journal on Teaching and Learning Mathematics is licensed under |
To ensure the language quality of the manuscript, the authors have to usea professional proofreading service. |