A Combination of Generalized Linear Mixed Model and LASSO Methods for Estimating Number of Patients Covid 19 in the Intensive Care Units
Abstract
Keywords
Full Text:
PDFReferences
J. Jiang, Linear and Generalized Linear Mixed Models and Their Applications. 2007.
A. Groll and G. Tutz, “Variable selection for generalized linear mixed models by L1-penalized estimation,” Stat. Comput., 2014, doi: 10.1007/s11222-012-9359-z.
T. Hastie, R. Tibshirani, and J. Friedman, Springer Series in Statistics, vol. 27, no. 2. New York, NY: Springer New York, 2008.
R. Tibshirani, “Regression shrinkage and selection via the lasso: A retrospective,” J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 73, no. 3, pp. 273–282, 2011, doi: 10.1111/j.1467-9868.2011.00771.x.
T. B. Arnold and R. J. Tibshirani, “Efficient Implementations of the Generalized Lasso Dual Path Algorithm,” J. Comput. Graph. Stat., vol. 25, no. 1, pp. 1–27, 2016, doi: 10.1080/10618600.2015.1008638.
S. Hossain, S. E. Ahmed, and K. A. Doksum, “Shrinkage, pretest, and penalty estimators in generalized linear models,” Stat. Methodol., vol. 24, pp. 52–68, 2015, doi: 10.1016/j.stamet.2014.11.003.
T. Zhang and H. Zou, “Sparse precision matrix estimation via lasso penalized D-trace loss,” Biometrika, 2014, doi: 10.1093/biomet/ast059.
N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group lasso,” J. Comput. Graph. Stat., 2013, doi: 10.1080/10618600.2012.681250.
J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Softw., vol. 33, no. 1, pp. 1–22, 2010, doi: 10.18637/jss.v033.i01.
T. Thomson and S. Hossain, “Efficient shrinkage for generalized linear mixed models under linear restrictions,” Sankhya Indian J. Stat., 2018.
J. Schelldorfer, P. Bühlmann, and S. Van De Geer, “Estimation for High-Dimensional Linear Mixed-Effects Models Using ℓ1-Penalization,” Scand. J. Stat., vol. 38, no. 2, pp. 197–214, 2011, doi: 10.1111/j.1467-9469.2011.00740.x.
J. G. Ibrahim, H. Zhu, R. I. Garcia, and R. Guo, “Fixed and Random Effects Selection in Mixed Effects Models,” Biometrics, 2011, doi: 10.1111/j.1541-0420.2010.01463.x.
J. Schelldorfer, L. Meier, and P. Bühlmann, “GLMMLasso: An algorithm for high- dimensional generalized linear mixed models using ℓ1-penalization,” J. Comput. Graph. Stat., vol. 23, no. 2, pp. 460–477, 2014, doi: 10.1080/10618600.2013.773239.
A. Groll, “glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-Penalized Estimation,” 2017.
A. Muslim, M. Hayati, B. Sartono, and K. A. Notodiputro, “A Combined Modeling of Generalized Linear Mixed Model and LASSO Techniques for Analizing Monthly Rainfall Data,” 2018, doi: 10.1088/1755-1315/187/1/012044.
D. Miller et al., “Analyzing changes in respiratory rate to predict the risk of COVID-19 infection.,” vol. 2, pp. 1–10, 2020, doi: 10.1101/2020.06.18.20131417.
G. Nardi et al., “Lactate Arterial-Central Venous Gradient among COVID-19 Patients in ICU: A Potential Tool in the Clinical Practice,” Crit. Care Res. Pract., 2020, doi: 10.1155/2020/4743904.
DOI: https://doi.org/10.18860/ca.v7i1.11575
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Alona Dwinata, Khairil Anwar Notodiputro, Bagus Sartono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.