On Rainbow Vertex Antimagic Coloring of Graphs: A New Notion
Abstract
All graph in this paper are simple, finite, and connected. Let be a labeling of a graph . The function is called antimagic rainbow edge labeling if for any two vertices and , all internal vertices in path have different weight, where the weight of vertex is the sum of its incident edges label. The vertex weight denoted by for every . If G has a antimagic rainbow edge labeling, then is a antimagic rainbow vertex connection, where the every vertex is assigned with the color . The antimagic rainbow vertex connection number of , denoted by , is the minimum colors taken over all rainbow vertex connection induced by antimagic rainbow edge labeling of . In this paper, we determined the exact value of the antimagic rainbow vertex connection number of path ( ), wheel ( ), friendship ( ), and fan ( ).
Keywords
Full Text:
PDFReferences
G. Chartrand, L. Lesniak, and P. Zhang, Graphs & Digraphs, Fifth Edition. 2010.
G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, “Rainbow connection in graphs,” Math. Bohem., vol. 133, pp. 85–98, 2008.
G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, “The rainbow connectivity of a graph,” Networks, 2009, doi: 10.1002/net.20296.
Dafik, I. H. Agustin, A. Fajariyato, and R. Alfarisi, “On the rainbow coloring for some graph operations,” vol. 020004, 2016, doi: 10.1063/1.4940805.
X. Li and Y. Sun, “An Updated Survey on Rainbow Connections of Graphs- A Dynamic Survey,” Theory Appl. Graphs, 2017, doi: 10.20429/tag.2017.000103.
M. Krivelevich and R. Yuster, “The rainbow connection of a graph is (at most) reciprocal to its minimum degree,” J. Graph Theory, vol. 63, pp. 185–191, 2010.
D. N. S. Simamora and A. N. M. Salman, “The Rainbow (Vertex) Connection Number of Pencil Graphs,” Procedia Comput. Sci., vol. 74, pp. 138–142, 2015, doi: 10.1016/j.procs.2015.12.089.
M. S. Hasan, Slamin, Dafik, I. H. Agustin, and R. Alfarisi, “On the total rainbow connection of the wheel related graphs,” 2018.
P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. Van Leeuwen, “Rainbow vertex coloring bipartite graphs and chordal graphs,” Leibniz Int. Proc. Informatics, LIPIcs, vol. 117, no. 83, pp. 1–13, 2018, doi: 10.4230/LIPIcs.MFCS.2018.83.
Dafik, Slamin, and A. Muharromah, “On the ( Strong ) Rainbow Vertex Connection of Graphs Resulting from Edge Comb Product,” 2018.
N. Hartsfield and G. Ringel, Pearls in Graph Theory. 2003.
R. Simanjuntak, F. Bertault, and M. Miller, “Two new (a, d)-antimagic graph labelings,” Proc. Elev. Australas. Work. Comb. Algorithms 11, pp. 179–189, 2000.
J. A. Gallian, “A dynamic survey of graph labeling,” Electron. J. Comb., vol. 1, no. DynamicSurveys, 2018.
B. J. Septory, M. I. Utoyo, Dafik, B. Sulistiyono, and I. H. Agustin, “On rainbow antimagic coloring of special graphs,” J. Phys. Conf. Ser., vol. 1836, no. 1, 2021, doi: 10.1088/1742-6596/1836/1/012016.
H. S. Budi, Dafik, I. M. Tirta, I. H. Agustin, and A. I. Kristiana, “On rainbow antimagic coloring of graphs,” J. Phys. Conf. Ser., vol. 1832, no. 1, 2021, doi: 10.1088/1742-6596/1832/1/012016.
DOI: https://doi.org/10.18860/ca.v7i1.12796
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Marsidi Marsidi, Ika Hesti Agustin, Dafik Dafik, Elsa Yuli Kurniawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.