Optimal Control and Cost-Effectiveness Analysis in An Epidemic Model with Viral Mutation and Vaccine Intervention

Yudi Ari Adi, Nursyiva Irsalinda, Meksianis Z Ndii


This paper introduces an optimal control problem in a two-strain SIR epidemic model with viral mutation and vaccine administration. The purpose of this study was to investigate the efficacy and cost-effectiveness of two disease prevention strategies, namely restriction of community mobility to prevent disease transmission and vaccine intervention. We consider the time-dependent control case, and we use Pontryagin’s Maximum Principle to derive necessary conditions for the optimal control of the disease. We also calculate the Average Cost-Effectiveness Ratio (ACER) and the Incremental Cost-Effectiveness Ratio (ICER) to investigate the cost-effectiveness of all possible strategies of the control measures. The results of this study indicate that the most cost-effective disease control strategy is a combination of mobility restriction and vaccination.


epidemic model; cost-effectiveness analysis; numerical simulation; optimal control; viral mutation

Full Text:



S. Ullah and M. A. Khan, “Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study,” Chaos, Solitons and Fractals, vol. 139, 2020, doi: 10.1016/j.chaos.2020.110075.

R. Shi, Y. Li, and C. Wang, “Stability analysis and optimal control of a fractional-order model for African swine fever,” Virus Res., vol. 288, no. July, p. 198111, 2020, doi: 10.1016/j.virusres.2020.198111.

Z. Zhang, S. Kundu, J. P. Tripathi, and S. Bugalia, “Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays,” Chaos, Solitons and Fractals, vol. 131, 2020, doi: 10.1016/j.chaos.2019.109483.

M. A. Kuddus, M. T. Meeha, L. J. Whit, E. S. McBryd, and A. I. Adekunl, “Modeling drug-resistant tuberculosis amplification rates and intervention strategies in Bangladesh,” PLoS One, 2020, doi: 10.1371/journal.pone.0236112.

Z. Abbasi, I. Zamani, A. Hossein, A. Mehra, and M. Shafieirad, “Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19,” Interdiscip. J. Nonlinear Sci. Nonequilibrium Complex Phenom., vol. 139, p. 110054, 2020, doi: 10.1016/j.chaos.2020.110054.

H. W. Berhe, O. D. Makinde, and D. M. Theuri, “Optimal Control and Cost-Effectiveness Analysis for Dysentery Epidemic Model,” Appl. Math. Inf. Sci., vol. 1195, no. 6, pp. 1183–1195, 2018.

S. K. Biswas, U. Ghosh, and S. Sarkar, “Mathematical model of zika virus dynamics with vector control and sensitivity analysis,” Infect. Dis. Model., vol. 5, pp. 23–41, 2020, doi: 10.1016/j.idm.2019.12.001.

M. Zamir, Z. Shah, F. Nadeem, A. Memood, H. Alrabaiah, and P. Kumam, “Non Pharmaceutical Interventions for Optimal Control of COVID-19,” Comput. Methods Programs Biomed., vol. 196, p. 105642, 2020, doi: 10.1016/j.cmpb.2020.105642.

R. Resmawan and L. Yahya, “Sensitifity Analysis of Mathematical Model of Coronavirus Disease (COVID-19) Transmission,” Cauchy, vol. 6, no. 2, p. 91, 2020, doi: 10.18860/ca.v6i2.9165.

M. Z. Ndii and Y. A. Adi, “Modelling the transmission dynamics of COVID-19 under limited resources,” Commun. Math. Biol. Neurosci., vol. 2020, pp. 1–24, 2020, doi: 10.28919/cmbn/4912.

A. Yousefpour, H. Jahanshahi, and S. Bekiros, “Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak,” Chaos, Solitons and Fractals, vol. 136, p. 109883, 2020, doi: 10.1016/j.chaos.2020.109883.

Y. A. Adi and M. Z. Ndii, “Modeling and Prediction of COVID-19 with a Large Scale Social Distancing,” J. Fourier, vol. 9, no. 1, pp. 1–9, 2020, doi: 10.14421/fourier.2020.91.1-9.

H. Zhang, Z. Yang, K. A. Pawelek, and S. Liu, “Optimal control strategies for a two-group epidemic model with vaccination-resource constraints,” Appl. Math. Comput., vol. 371, p. 124956, 2020, doi: 10.1016/j.amc.2019.124956.

Y. A. Adi, “A Within-host Tuberculosis Model Using Optimal Control,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 5, no. 1, p. 162, 2021, doi: 10.31764/jtam.v5i1.3813.

J. Jang, H. Kwon, and J. Lee, “Optimal control problem of an SIR reaction – diffusion model with inequality constraints,” Math. Comput. Simul., vol. 171, pp. 136–151, 2020, doi: 10.1016/j.matcom.2019.08.002.

G. B. Libotte, F. S. Lobato, G. M. Platt, and A. J. Silva Neto, “Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment,” Comput. Methods Programs Biomed., vol. 196, p. 105664, 2020, doi: 10.1016/j.cmpb.2020.105664.

M. Z. Ndii, A. R. Mage, J. J. Messakh, and B. S. Djahi, “Optimal vaccination strategy for dengue transmission in Kupang city , Indonesia,” Heliyon, vol. 6, no. October, p. e05345, 2020, doi: 10.1016/j.heliyon.2020.e05345.

P. Radvak et al., “SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains,” Nat. Commun., vol. 12, no. 1, pp. 1–15, 2021, doi: 10.1038/s41467-021-26803-w.

Y. A. Adi, N. Irsalinda, A. Wiraya, Sugiyarto, and Z. A. Rafsanjani, “An epidemic model with viral mutations and vaccine interventions,” Submitt. Publ., 2021.

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models. Chapman & Hall/CRC, 2007.

H. W. Berhe, “Optimal Control Strategies and Cost-effectiveness Analysis Applied to Real Data of Cholera Outbreak in Ethiopia’s Oromia Region,” Chaos, Solitons and Fractals, vol. 138, pp. 1–14, 2020, doi: 10.1016/j.chaos.2020.109933.

J. K. Asamoah et al., “Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions,” Chaos, Solitons and Fractals, vol. 146, 2021, doi: 10.1016/j.chaos.2021.110885.

D. Aldila, “Cost-Effectiveness and Backward Bifurcation Analysis on COVID-19 Transmission Model Considering Direct and Indirect Transmission,” Commun. Math. Biol. Neurosci., pp. 1–28, 2020.

Fatmawati, U. Dyah Purwati, F. Riyudha, and H. Tasman, “Optimal control of a discrete age-structured model for tuberculosis transmission,” Heliyon, 2020, doi: 10.1016/j.heliyon.2019.e03030.

L. Cesari, Optimization-Theory and Applications. New York, NY, USA: Springer, 1983.

T. Burden, J. Ernstberger, and K. R. Fister, “Optimal control applied to immunotherapy,” Discret. Contin. Dyn. Syst. - Ser. B, vol. 4, no. 1, pp. 135–146, 2004, doi: 10.3934/dcdsb.2004.4.135.

C. Campos, C. J. Silva, and D. F. M. Torres, “Numerical optimal control of HIV transmission in OCTAVe/MATLAB,” Math. Comput. Appl., 2020, doi: 10.3390/mca25010001.

DOI: https://doi.org/10.18860/ca.v7i2.13184


  • There are currently no refbacks.

Copyright (c) 2022 Yudi Ari Adi, Nursyiva Irsalinda, Meksianis Z Ndii

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.