η-Intuitionistic Fuzzy Soft Groups

Mustika Ana Kurfia, Noor Hidayat, Corina Karim

Abstract


In this research, we present the idea of the intuitionistic fuzzy soft group defined on the intuitionistic fuzzy soft set. The main purpose of this research is to create a new concept, which is an intuitionistic fuzzy group. To achieve this, we combine the concept of intuitionistic fuzzy group and intuitionistic fuzzy soft group. As the main result, we prove the correlation between the intuitionistic fuzzy soft group and intuitionistic fuzzy soft group along with some properties of intuitionistic fuzzy soft groups. Also, we prove some properties of a subgroup of an intuitionistic fuzzy soft group. An intuitionistic fuzzy soft homomorphism is also proved.


Keywords


Intuitionistic Fuzzy Group; Intuitionistic Fuzzy Soft Group; η-Intuitionistic Fuzzy Group; η-Intuitionistic Fuzzy Soft Group

Full Text:

PDF

References


L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965, doi: 10.1016/S0019-9958(65)90241-X.

K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1, pp. 87–96, 1986, doi: 10.1016/S0165-0114(86)80034-3.

A. Rosenfeld, “Fuzzy groups,” J. Math. Anal. Appl., vol. 35, no. 3, pp. 512–517, 1971, doi: 10.1016/0022-247X(71)90199-5.

R. Biswas, “Intuitionistic Fuzzy Subgroups,” Math. Forum, vol. 10, pp. 37–46, 1989.

N. Palaniappan, S. Naganathan, and K. Arjunan, “A study on intuitionistic L-fuzzy subgroups,” Appl. Math. Sci., vol. 3, no. 53, pp. 2619–2624, 2009.

X. Yuan, H. Li, and E. . Lee, “On The Definition of The Intuitionistic Fuzzy Subgroups,” Comput. Math. with Apl., vol. 59, pp. 3117–3129, 2010.

P. K. Sharma, “(α,β)Cut of Intuitionistic Fuzzy Subgroups,” Int. Math. Forum, vol. 6, no. 53, pp. 2605–2614, 2011.

P. K. Sharma, “t- Intuitionistic Fuzzy Subgroups,” Int. J. Fuzzy Math. Syst., vol. 2, no. 3, pp. 233–243, 2012.

N. Doda and P. K. Sharma, “Counting the number of intuitionistic fuzzy subgroups of finite Abelian groups of different order,” Notes Intuitionistic Fuzzy Sets, vol. 19, no. 4, pp. 42–47, 2013.

W. Zhou and Z. Xu, “Extended Intuitionistic Fuzzy Sets Based on the Hesitant Fuzzy Membership and their Application in Decision Making with Risk Preference,” Int. J. Intelegence Syst., vol. 00, pp. 1–27, 2017, doi: 10.1002/int.

S. Sun and C. Liu, “(λ,μ)-Intuitionistic Fuzzy Subgroups of Groups with Operators,” Int. J. Math. Comput. Sci., vol. 10, no. 9, pp. 456–462, 2016.

M. Gulzar, D. Alghazzawi, M. H. Mateen, and N. Kausar, “A certain class of T-intuitionistic fuzzy subgroups,” IEEE Access, vol. 8, pp. 163260–163268, 2020, doi: 10.1109/ACCESS.2020.3020366.

L. Latif, U. Shuaib, H. Alolaiyan, and A. Razaq, “On Fundamental Theorems of t-Intuitionistic Fuzzy Isomorphism of t-Intuitionistic Fuzzy Subgroups,” IEEE Access, vol. 6, pp. 2169–3536, 2018.

U. Shuaib, M. Amin, S. Dilbar, and F. Tahir, “On Algebraic Attributes of ξ -Intuitionistic Fuzzy Subgroups,” Int. J. Math. Comput. Sci., vol. 15, no. 1, pp. 395–411, 2020.

U. Shuaib, H. Alolaiyan, A. Razaq, D. Saba, and F. Tahir, “On some algebraic aspects of η-intuitionistic fuzzy subgroups,” J. Taibah Univ. Sci., vol. 14, no. 1, pp. 463–469, 2020, doi: 10.1080/16583655.2020.1745491.

H. Aktaş and N. Çaǧman, “Soft sets and soft groups,” Inf. Sci. (Ny)., vol. 177, no. 13, pp. 2726–2735, 2007, doi: 10.1016/j.ins.2006.12.008.

P. . Maji, A. . Roy, and R. Biswas, “Fuzzy Soft Sets,” J. Fuzzy Math., vol. 9, no. 3, pp. 589–602, 2001.

P. . Maji, R. Biswas, and A. . Roy, “Intuitionistic Fuzzy Soft Set,” J. Fuzzy Math., vol. 9, no. 3, pp. 677–692, 2001.

Y. Yin, H. Li, and Y. Bae, “On algebraic structure of intuitionistic fuzzy soft sets,” Comput. Math. with Appl., vol. 64, no. 9, pp. 2896–2911, 2012, doi: 10.1016/j.camwa.2012.05.004.

A. Aygünoglu and H. Aygun, “Introduction to Fuzzy Soft Groups,” Comput. Math. with Appl., vol. 58, pp. 1279–1286, 2009, doi: 10.1016/j.camwa.2009.07.047.

J. Zhou, “Intuitionistic fuzzy soft semigroups,” Math. Aeterna, vol. 1, no. 03, pp. 173–183, 2011.

M. Akram and N. Yaqoob, “Intuitionistic fuzzy soft ordered ternary semigroups,” Int. J. Pure Appl. Math., vol. 84, no. 2, pp. 93–107, 2013, doi: 10.12732/ijpam.v84i2.8.

N. Cagman, F. Citak, and H. Aktas, “Soft int-group and its applications to group theory,” Neural Comput Applic, vol. 21, no. 1, pp. S151–S158, 2012, doi: 10.1007/s00521-011-0752-x.

F. Karaaslan, K. Kaygisiz, and N. Cagman, “On Intuitionistic Fuzzy Soft Groups,” J. New Results Sci., vol. 2, no. 3, pp. 72–86, 2013.




DOI: https://doi.org/10.18860/ca.v7i3.14555

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Mustika Ana Kurfia, Noor Hidayat, Corina Karim

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.