on Graceful Chromatic Number of Vertex amalgamation of Tree Graph Family

Arika Indah Kristiana, Ahmad Aji, Edy Wihardjo, Deddy Setiawan

Abstract


Proper vertex coloring c of a graph G is a graceful coloring if c is a graceful k-coloring for k∈{1,2,3,…}. Definition graceful k-coloring of a graph G=(V,E) is a proper vertex coloring c:V(G)→{1,2,…,k);k≥2, which induces a proper edge coloring c':E(G)→{1,2,…,k-1} defined c'(uv)=|c(u)-c(v)|. The minimum vertex coloring from graph G can  be colored with graceful coloring called a graceful chromatic number with notation χg (G). In this paper, we will investigate the graceful chromatic number of vertex amalgamation of tree graph family with some graph is path graph, centipede graph, broom and E graph.

Keywords


Graceful coloring, tree graph family, graceful chromatic number, vertex amalgamation.

Full Text:

PDF

References


O. oscar Levin, Discrete Mathematics. Greeley: University of Northern Colorado, 2019.

Hasmawati, Teori Graf. UNIVERSITAS HASANUDDINUniversity Hassanudin, 2015.

G. Chartrand and P. Zhang, A First Course in Graph Theory. Boston: McGraw-Hill Higher Education, 2012.

P. Zhang, A Kaleidoscopic View of Graph Colorings. USA: Spinger, 2016.

S. English, P. Zhang, and Kalamazoo, “On graceful colorings of trees,” Math. Bohem., vol. 142, no. 1, pp. 57–73, 2017, doi: 10.21136/MB.2017.0035-15.

R. Mincu, C. Obreja, and A. Popa, “The Graceful Chromatic Number for Some Particular Classes of Graphs,” Proc. - 21st Int. Symp. Symb. Numer. Algorithms Sci. Comput. SYNASC 2019, no. September 2019, pp. 109–115, 2019, doi: 10.1109/SYNASC49474.2019.00024.

R. Alfarisi, Dafik, R. M. Prihandini, R. Adawiyah, E. R. Albirri, and I. H. Agustin, “Graceful Chromatic Number of Unicyclic Graphs,” J. Phys. Conf. Ser., vol. 1306, no. 1, 2019, doi: 10.1088/1742-6596/1306/1/012039.

N. A. Sania, Dafik, and A. Fatahillah, “Bilangan Kromatik Graceful pada Keluarga Graf Unicyclic Pendahuluan Lemma yang Digunakan Hasil Penelitian,” CGANT J. Math. Appl., vol. 1, no. 2, pp. 27–38, 2020, doi: 10.25037/cgantjma.v1i2.39.

S. Khoirunnisa, Dafik, A. I. Kristiana, R. Alfarisi, and E. R. Albirri, “On graceful chromatic number of comb product of ladder graph,” J. Phys. Conf. Ser., vol. 1836, no. 1, 2021, doi: 10.1088/1742-6596/1836/1/012027.

A. Arbain, “Bilangan Terhubung-Total Pelangi untuk Beberapa Graf Amalgamasi,” Saintifik, vol. 4, no. 1, pp. 18–23, 2018, doi: 10.31605/saintifik.v4i1.148.

L. D. Minarti, Dafik, S. Setiawani, Slamin, and A. Fatahillah, “Pewarnaan Sisi Dinamis pada Graf Hasil Operasi Amalgamasi Titik Keluarga Graf Pohon dan Kaitannya Dengan Keterampilan Berpikir Tingkat Tinggi,” Pap. Knowl. . Towar. a Media Hist. Doc., pp. 15–22, 2019.

A. F. Akadji, D. Taha, N. Lakisa, and N. I. Yahya, “Bilangan Terhubung Titik Pelangi Pada Amalgamasi Graf Berlian,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 7, no. 2, pp. 56–61, 2019, doi: 10.34312/euler.v7i2.10345.

C. Sisi and G. Tangga, “Antimagic Total Selimut, Comb Sisi Graf Tangga Segitiga dengan Amalgamasi Graf Sikel,” Kadikma, 2017.

S. M. Citra, A. I. Kristiana, R. Adawiyah, Dafik, and R. M. Prihandini, “On the packing chromatic number of vertex amalgamation of some related tree graph,” J. Phys., vol. 1836, no. 1, 2021, doi: 10.1088/1742-6596/1836/1/012025.

K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed. New York: MCGraw,Hill, 2012.

A. K. Purnapraja, D. Dafik, and I. Azizah, “Super ( a , d ) - H -Antimagic Total Selimut pada Graf Shackle Kipas F4,” Pros. Semin. Nas. Mat. dan Pendidik. Mat. Vol 1, No 1, vol. 46, pp. 2–8, 2014.

S. Sriram, D. Ranganayakulu, I. Venkat, and K. G. Subramanian, “On Eccentric Graphs of Broom Graphs,” Ann. Pure Appl. Math., vol. 5, no. 2, pp. 146–152, 2014.

M. Ajmal, W. Nazeer, W. Khalid, and S. M. Kang, “Zagreb Polynomials and Multiple Zagreb Indices for the Line Graphs of Banana Tree Graph , Firecracker Graph,” Glob. J. Pure Appl. Math., vol. 13, no. 6, pp. 2659–2672, 2017.




DOI: https://doi.org/10.18860/ca.v7i3.16334

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Arika Indah Kristiana, Ahmad Aji, Edy Wihardjo, Deddy Setiawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.