On the study of Rainbow Antimagic Coloring of Special Graphs

Dafik Dafik, Riniatul Nur Wahidah, Ermita Rizki Albirri, Sharifah Kartini Said Husain

Abstract


Let  be a connected graph with vertex set  and edge set . The bijective function  is said to be a labeling of graph where  is the associated weight for edge . If every edge has different weight, the function  is called an edge antimagic vertex labeling. A path  in the vertex-labeled graph , with every two edges  satisfies  is said to be a rainbow path. The function  is called a rainbow antimagic labeling of , if for every two vertices , there exists a rainbow  path. Graph  admits the rainbow antimagic coloring, if we assign each edge  with the color of the edge weight  . The smallest number of colors induced from all edge weights of edge antimagic vertex labeling is called a rainbow antimagic connection number of , denoted by . In this paper, we study rainbow antimagic connection numbers of octopus graph , sandat graph , sun flower graph , volcano graph  and semi jahangir graph Jn.


Keywords


antimagic labeling; rainbow coloring; rainbow antimagic connection number; special graphs

Full Text:

PDF

References


Al Jabbar Z L, Dafik Adawiyah R, Albirri E R, Agustin I H, On rainbow antimagic coloring of some special graph, Journal of Physics: Conference Series. 1465 (1) (2020).

Arumugam S, Miller M, Phanalasy O, Ryan J, Antimagic labeling of generalized pyramid graphs, Acta Mathematica Sinica, English Series. 30 (2) (2014), 283–290.

Arumugam S, Premalatha K, Baˇca M, Semaniˇcov´a-Feˇnovˇc´ıkov´a A, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017), 275-285.

Baˇca M, Antimagic labelings of antiprisms, Journal of combinatorial mathematics and combinatorial computing. 35 (2000), 217-224.

Baˇca M, Baskoro E T, Jendrol S, Miler M, Antimagic labelings of hexagonal plane maps, Utilitas mathematica. 66 (2004), 231-238.

Baˇca M, Phanalasy O, Ryan J, Semanicov´a-Fenoˇc´ıkov´a A, Antimagic labelings of joint graphs, Mathematics in Computer Science. 9 (2) (2015), 139–143.

Budi H S, Dafik, Tirta I M, Agustin I H, Kristiana A I, On rainbow antimagic coloring of graphs, Journal of Physics: Conf. Series, 1832 (2021), 012016.

Bustan A W, Salman A N M, The rainbow vertex connection number of star wheel graphs, AIP Conference Proceedings. (2019), 112–116.

Chartrand G, Lesniak L, Zhang P, Graphs & Digraphs, sixth ed., Taylor & Francis Group, New York, 1 (2016).

Chartrand G, Johns G L, Mckeon K A, Zhang P, Rainbow connection in graphs, Math. Bohemica 133 (2008), 85-98.

Dafik, Miler M, Ryan J, Baˇca M, Antimagic labeling of the union of two stars, Australasian Journal of combinatorics. 42 (2018), 35-44.

Dafik, Susanto F, Alfarisi R, Septory B J, Agustin I H, Venkatachalam M, On rainbow antimagic coloring of graphs. Advanced Mathematical Models and Aplication. 6 (3) (2021) 278-291.

Hartsfield N, Ringel G, Pearls in Graph Theory, Academic Press, San Diego, 1990.

Joedo J C, Dafik, Kristiana A I, Agustin I H, Nisviasari R, On the rainbow antimagic coloring of vertex almagamation of graphs, Journal of Physics: Conf. Series 2157 (2022), 012014.

Lei H, Liu H, Magnant C, Shi Y, Total rainbow connection of digraphs, Discrete Applied Mathematics. 236 (2018), 288–305.

Lei H, Li S, Liu H, Shi Y, Rainbow vertex connection of digraphs, Journal of Combinatorial Optimization. 35 (1)(2018), 86–107.

Li X, Liu S (n.d.), Rainbow vertex-connection number of 2-connected graphs. arxiv:1110v1[math.CO].

Ma Y, Total Rainbow Connection Number and Complementary Graph, Results in Mathematics, 70 (1–2) (2016), 173–182.

Ma Y, Lu Z, Rainbow connection numbers of Cayley graphs, Journal of Combinatorial Optimization,34 (1) (2017), 182–193.

Ma Y, Nie K, Jin F, Wang C, Total rainbow connection numbers of some special graphs, Applied Mathematics and Computation,360 (2019), 213–220.

Nabila S, Salman A N M, The Rainbow Connection Number of Origami Graphs and Pizza Graphs, Procedia Computer Science, 74 (1) (2015), 162–167.

Ryan J, Phanalasy O, Miller M, Rylands L, On antimagic labeling for generalized web and flower graphs, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6460 LNCS (2011), 303–313.

Sulistiyono B, Slamin, Dafik, Agustin I H, Alfarisi R, On rainbow antimagic coloring of some graphs, Journal of Physics: Conference Series. 1465 (1) (2020).

Septory B J, Utoyo M I, Dafik, Sulistiyono B, Agustin I H, On rainbow antimagic coloring of special graphs. Journal of Physics: Conference Series. 1836 (2021) 012016.

Wang T M, Zhang G H, On antimagic labeling of regular graphs with particular factors, Journal of Discrete Algorithms, 23 (2013), 76–82.




DOI: https://doi.org/10.18860/ca.v7i4.17836

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Dafik Dafik, Riniatul Nur Wahidah, Ermita Rizki Albirri, Sharifah Kartini Said Husain

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.