Mathematical Modeling of HIV/AIDS Disease Spread with Public Awareness
Abstract
This study develops mathematical model for the spread of HIV/AIDS by the population is divided into seven sub-populations, namely the susceptible unaware HIV subpopulation, the susceptible aware HIV sub-population, the infected sub-population, the pre-AIDS sub-population, the ARV treatment sub-population, the AIDS sub-population, and unlikely to be infected with HIV/AIDS sub-population. In this mathematical model, two equilibrium points are obtained, namely the disease-free equilibrium point and the disease-endemic equilibrium point and the basic reproduction number . The stability analysis shows that the disease-free equilibrium point is locally asymptotically stable if and the disease-endemic equilibrium point is locally asymptotically stable if . Numerical simulations of the equilibrium points are carried out to provide an overview of the analyzed results with parameter values from several sources. Based on the sensitivity analysis, the parameters that significantly affect the spread of HIV/AIDS are the contact rate of HIV-unaware individuals with infected individuals and the transmission rate of HIV infection
Keywords
Full Text:
PDFDOI: https://doi.org/10.18860/ca.v9i1.23424
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Manaqib, Elisda Mieldhania Zhafirah, Irma Fauziah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.