The Boundedness of Generalized Fractional Integral Operators on Small Morrey Spaces

Rizky Aziz Syaifudin, Corina Karim, Marjono Marjono, Hairur Rahman

Abstract


The small Morrey space is the set of locally Lebesgue integrable functions with norm defined supremum over radius of ball . This paper aims to prove the boundedness properties of the generality of fractional integral operators in small Morrey spaces using Hedberg-type inequality.  The first, in this paper will be discuss to prove Hedberg-type inequality on small Morrey spaces using dyadic decomposition, H lder inequality, and doubling condition. Furthermore, by using the inequality, it can be proven that the boundedness of generalized fractional integral operators on small Morrey spaces.


Keywords


Fractional Integral Operators; Hedberg-type inequality; small Morrey spaces

Full Text:

PDF

References


[1]

Morrey, C.B. 1938. On the Solutions of Quasi-linear Elliptic Partial Differential Equantions. Trans. Amer. Math. Soc. 43: 126-166.

[2]

Hardy, G.H. dan Littlewood, J.E. 1927. Some Properties of Fractional Integrals. Math. Zeit. 27: 565-605.

[3]

Adams, D. 1975. A Note on Riesz Potentials. Duke Maths. 42: 765-778.

[4]

Chiarenza, F. dan Frasca, M. 1987. Morrey Spaces and Hardy-Littlewood Maximal Function. Rend. Mat. 7: 273-279.

[5]

Nakai, E. 1994. Hardy-Littlewood Maximal Operator, Singular Integral Operator, and Riesz Potentials on Generalized Morrey Spaces. Math. Nachr. 166: 95-103

[6]

Gunawan, H. and Eridani. 2009. Fractional integrals and generalized Olsen inequalities. Kyungpook Math. 49(1):31-39.

[7]

Karim, C., dan Apriliani, E. 2008. Variasi Ketaksamaan Spanne. Prosiding Seminar Nasional Matematika IV. Surabaya: 13 Desember 2008.

[8]

Sawano, Y., Fazio, G. D., and Maryani, S. 2020. Introduction and Applications to Integral Operators and PDE's. CRC Press.

[9]

Karim, C., Syaifudin, R. A., Marjono, and Rahman, H. 2023. The boundedness of fractional integral operators on small Morrey spaces. Atlantis Press Proceeding, Brawijaya International Conference.

[10]

Sawano, Y., Fazio, G. D., and Maryani, S. 2020. Introduction and Applications to Integral Operators and PDE's. CRC Press.

[11]

Bartle, R. G. dan D.R. Sherbert. 1995. The Elements of Integration and Lebesgue Measure. John Willey & Sons. New York.

[12]

Sawano, Y. 2018. A Thought on Generalized Morrey Spaces. J. Indonesian. Math. Soc. 3(25): 210-281.

[13]

Eridani. 2002. On the Boundedness of a Generalized Fractional Integral on Generalized Morrey Spaces. Tamkang Journal of Mathematics. 4(33): 335-340.

[14]

Eridani. 2002. On the Boundedness of A Generalized Fractional Integral on Generalized Morrey Spaces. Tamkang Journal of Mathematics. 4(33): 335-340.

[15]

Castillo, R. E. dan H. Rafeiro. 2016. An Introductory Course in Lebesgue Spaces. Springer. Swiss.




DOI: https://doi.org/10.18860/ca.v9i1.24309

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rizky Aziz Syaifudin, Corina Karim, Marjono Marjono, Hairur Rahman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.