SEIR Mathematical Model with the Use of Hand Sanitizers to Prevent the Spread of Covid-19 Disease

Muhamad Ali Misri, Khelan Hussien Qadr, Muhammad Avif Rahmatullah


The SARS-CoV-2 coronavirus can spread through contact with contaminated surfaces. The use of hand sanitizer is claimed to reduce the risk of transmission. For this reason, this study aims to develop a model of the spread of COVID-19 using the SEIR model with the use of hand sanitizer for infected individuals. The individual population is divided into six compartments, namely two compartments for susceptible individuals who using hand sanitizer and not, one compartment for exposed individuals, two compartments for infected individuals who using hand sanitizer and not, and one compartment for individuals died and recovered. The results obtained two equilibrium points: the disease-free and endemic equilibrium point, and also the basic reproduction number. The existence of a disease-free equilibrium point is unconditional, while the endemic there exist when the basic reproduction number is more than one. Stability analysis of the disease-free equilibrium point is locally asymptotic stable when the basic reproduction number is less than one. Numerical simulations carried out also strengthen them. Finally, the results of basic reproduction number sensitivity analysis show that the basic reproduction number is strongly influenced by contact of the susceptible individuals with exposed and infected individuals, neglecting of hand sanitizer use, mortality and cure rates.


COVID-19; Hand sanitizer; SEIR Model; Basic Reproduction Number; Stability of Equilibrium Point

Full Text:



E. Hartati, "Model Matematika Penyebaran Penyakit Covid-19 Dengan Penggunaan Masker Kesehatan Dan Karantina," 2021. [2] A. Prasetya, "2 WNI Terdeteksi Virus Corona Sejak Minggu 1 Maret,”detikNews, 02 03 2020," [Online]. Available: [3] A. Mitra, "Covid-19 in india and sir model," J. Mech. Cont.& Math. Sci., vol. 15, no. 7, pp. 1-8, 2020. [4] G. O. Fosu, J. M. Opong and J. K. Appati, "Construction of Compartmental Models for COVID-19 with Quarantine, Lockdown and Vaccine Interventions," SSRN Electron. J., p. 1–15, 2020. [5] M. Imran, M. Wu, Y. Zhao, E. Beşe and M. J. Khan, "Mathematical Modelling of SIR for COVID-19 Forecasting," Revista Argentina de Clínica Psicológica, no. 1, pp. 218-226, 2021. [6] M. Ivanova and L. K. Dospatliev, "Data Analytics and Sir Modeling of Covid-19 in Bulgaria," Int. J. Apllied Math., vol. 33, 2021. [7] M. I. Afwan and H. , "Pemodelan Matematika Penyebaran Penyakit Covid-19 dengan Menggunakan Model SIRS," UNPjoMath, vol. 4, no. 2, pp. 34-40, 2021. [8] Z. Liao, P. Lan, Z. Liao, Y. Zhang and S. Liu, "TW-SIR: time-window based SIR for COVID-19 forecasts," Sci. Rep., vol. 10, no. 1, p. 1–16, 2020. [9] N. L. G. S. Armita, L. P. I. Harini and I. A. P. A. Utari, "Model Matematika SIR pada Penyebaran Penyakit Covid-19 dengan Efektivitas Vaksin," E-Jurnal Matematika, vol. 13, no. 1, pp. 38-44, 2024. [10] M. Ala’raj, M. Majdalawieh and N. Nizamuddin, "Modeling and forecasting of COVID-19 using a hybrid dynamic model based on SEIRD with ARIMA corrections," Infect. Dis. Model., vol. 6, p. 98–111, 2021. [11] M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. P. y. Piontti, K. Mu, L. Rossi, K. Sun, C. Viboud, X. Xiong, H. Yu, M. E. Halloran, I. M. L. Jr and A. Vespignani, "The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak," Science, vol. 9757, p. 1–12, 2020. [12] D. Kai, G.-P. Goldstein, A. Morgunov, V. Nangalia and A. Rotkirch, "Universal masking is urgent in the COVID-19 pandemic: SEIR and agent based models, empirical validation, policy recommendations," arXiv, pp. 1-19, 2020. [13] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk and R. M. Eggo, "Early dynamics of transmission and control of COVID-19: A mathematical modelling study," medRxiv, vol. 20, no. 5, pp. 553-558, 2020. [14] C. Wang, L. Liu, X. Hao, H. Guo, Q. Wang, J. Huang, N. He, H. Yu, X. Lin, A. Pan, S. Wei and T. Wu, "Evolving epidemiology and impact of non-pharmaceutical interventions on the outbreak of coronavirus disease 2019 in Wuhan, China," Jama-Journal Of The American Medical Association, vol. 323, no. 19, pp. 1915-1923, 2020. [15] J. T. Wu, K. Leung and G. M. Leung, "Nowcasting and Forecasting the Potential Domestic and International Spread of the 2019-nCoV Outbreak Originating in Wuhan, China: A Modeling Study," Obstetrical and Gynecological Survey, vol. 75, no. 7, p. 399–400, 2020. [16] Z. Yang, Z. Zeng, K. Wang, S.-S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao, Z. Gao, Z. Mai, J. Liang, X. Liu, S. Li, Y. Li, F. Ye, W. Guan, Y. Yang, F. Li, S. Luo, Y. Xie, B. Liu, Z. Wang, S. Zhang, Y. Wang, N. Zhong and J. He, "Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions," J. Thorac. Dis., vol. 12, no. 3, p. 165–174, 2020. [17] S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, Y. Lou, D. Gao, L. Yang, D. He and M. H. Wang, "Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak," Int. J. Infect. Dis., vol. 92, p. 214–217, 2020. [18] M. Manaqib, M. Azizah, E. Hartati, S. Pratiwi and R. A. Maulana, "Analysis of Mathematical Models of Spread COVID-19 with Lockdown and Quarantine," BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 3, pp. 479-492, 2021. [19] B. K. Mishra, A. K. Keshri, Y. S. Rao, B. K. Mishra, B. Mahato, S. Ayesha, B. P. Rukhaiyyar, D. K. Saini and A. K. Singh, "COVID-19 created chaos across the globe: Three novel quarantine epidemic models," Chaos, Solitons & Fractals, vol. 138, pp. 1-34, 2020. [20] T. detikcom, "Tambah 10.365, Kasus Corona di RI Per 19 Januari Jadi 927.380," 19 Januri 2021. [Online]. Available: [Accessed 30 Maret 2024]. [21] F. Adi-Kusumo, N. Susyanto, I. Endrayanto and A. Meliala, "Model Berbasis Sir dalam Prediksi Awal Penyebaran Covid-19 di Daerah Istimewa Yogyakarta (DIY)," Jurnal matematika thales (jmt), vol. 02, no. 1, pp. 1-10, 2020. [22] B. Rinaldi, Pemodelan Matematika Penyebaran Penyakit Corona Viruses Disease 2019 (covid-19) Pada Kasus Penggunaan Masker Kesehatan., Jambi: Universitas Jambi, 2021. [23] L. Hakim, "Multiple Strategies as Optimal Control of a Covid-19 Disease with Quarantine and Using Health Masks," BAREKENG: Journal of Mathematics and Its Application, vol. 16, no. 3, pp. 1059-1068, 2022. [24] Mujiyanti, Pemodelan Matematika Penyebaran Penyakit Middle East Respiratory Syndrome Coronavirus (Mers-CoV) Dengan Penggunaan Masker Kesehatan Dan Vaksinasi, Jakarta: UIN Jakarta, 2019. [25] M. R. Nisardi, S. H. S. and S. Toaha, "Mathematical Model of COVID-19 with Quarantine and Vaccination," Jurnal Matematika, Statistika dan Komputasi, vol. 19, no. 2, pp. 266-285, 2023. [26] S. Annas, M. I. Pratama, M. Rifandi, W. Sanusi and S. Side, "Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia," Chaos, Solitons and Fractals, vol. 139, pp. 1-7, 2020. [27] E. Bormasa, D. L. Rahakbauw and D. Patty, "Pemodelan penularan penyakit hepatitis menggunakan model SEIR," Amalgamasi : Journal of Mathematics and Applications, vol. 1, no. 2, pp. 54-63, 2022. [28] H. Ihsan, S. Side and M. Pagga, "Pemodelan Matematika SEIRS Pada Penyebaran Penyakit Malaria di Kabupaten Mimika," Journal of Mathematics, Computations, and Statistics, vol. 4, no. 1, p. 21 – 29, 2021. [29] E. Meyliana, A. Kusumastuti and J. , "Analisis Dinamik Model Matematika Penyebaran COVID-19 Pada Populasi SEIR," Jurnal Riset Mahasiswa Matematika, vol. 1, no. 4, pp. 186-194, 2022. [30] K. Nisa, H. Rahman and A. Kusumastuti, "Model Epidemi Suspected Exposed Infected Recovered (SEIR) Pada Penyebaran COVID-19 Orde-Fraksional," Jurnal Riset Mahasiswa Matematika, vol. 1, no. 3, pp. 156-164, 2022. [31] E. Taghizadeh and A. Mohammad-Djafari, "SEIR Modeling, Simulation, Parameter Estimation, and Their Application for COVID-19 Epidemic Prediction," Phys.Sci.Forum, vol. 5, no. 18, pp. 1-8, 2022. [32] O. Diekmann and J. A. P. Heesterbeck, Mathematical epidemiology of infectious disease model building anaysis and interprelation, USA: Pricenton university, 2000. [33] S. Side, W. Sanusi and N. A. Bohari, "Pemodelan Matematika SEIR Penyebaran Penyakit Pneumonia pada Balita dengan Pengaruh Vaksinasi di Kota Makassar," JMathCos(Journal of Mathematics, Computations, and Statistics, vol. 4, no. 1, p. 1 – 12, 2021.



  • There are currently no refbacks.

Copyright (c) 2024 Muhamad Ali Misri, Muhammad Avif Rahmatullah, Khelan Hussien Qadr

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.