Bifurcation Analysis of a Discrete Logistic System with Additive Allee Effect and Feedback Control
Abstract
Keywords
Full Text:
PDFReferences
[1] J.D. Murray, Mathematical Biology: 1, An Introduction. Springer-Verlag, Inc, 2002.
[2] N. Wiener, Cybernetics or Control and Communication in the Animal and the Machine, MIT Press, 1948.
[3] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, 1992.
[4] L. Liao, "Feedback Regulation of a Logistic Growth", J. Math. Anal. Appl., vol. 259, no. 2, pp. 489-500, 2001.
[5] M. T. Hoang," A Generalized Feedback Control Model for the Logistic Differential Equation". International Journal of Dynamics and Control, vol. 11, no. 5, pp. 2265-2272, 2023.
[6] L. J. Chen, F. Chen, "Global Stability of a Leslie-Gower Predator-Prey Model with Feedback Controls", Applied Mathematics Letters, vol. 22, no. 9, pp. 1330-1334, 2009.
[7] W. Lai, "On the Permanence of a Nonautonomous Nicholslon's Blowflies Model with Feedback Control and Delay", Chin. Quart. J. of Math., vol. 26, pp. 568-572, 2011.
[8] T. Zhang, W. Ma, X. Meng, T. Zhang, "Periodic Solution of a Prey-Predator Model with Nonlinear State Feedback Control", Applied Mathematics and Computation, vol. 266, pp. 95-107, 2015.
[9] G. Q. Sun, "Mathematical Modeling of Population Dynamics with Allee Effect", Nonlinear Dyn., vol. 85, pp. 1-12, 2016.
[10] P. A. Stephens, W. J. Sutherland, R. P. Freckleton, "What is the Allee Effect?", Oikos, vol. 87, pp. 185-190, 1999.
[11] F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, New York, 2009.
[12] M. Kuussaari, I. Saccheri, M. Camara, I. Hanski, "Allee Effect and Population Dynamics in the Glanville Fritillary Butterfly", Oikos, vol. 82, pp. 384-392, 1998.
[13] B. Dennis, "Allee Effects: Population Growth, Critical Density, and the Chance of Extinction", Nat Resour., vol. 3, pp. 481-538, 1989.
[14] Q. Lin, "Stability Analysis of a Single Species Logistic Model with Allee Effect and Feedback Control", Advances in Difference Equations, vol. 190 , 2018.
[15] A. Suryanto, I. Darti, Trisilowati, "Dynamic Behavior of a Harvested Logistic Model Incorporating Feedback Control", Commun. Math. Biol. Neurosci., vol. 2024, Article ID 4, 2024.
[16] Y. Lv, L. Chen, F. Chen, "Stability and Bifurcation in a Single Species Logistic Model with Additive Allee Effect and Feedback Control", Advances in Difference Equations, vol. 129, 2020.
[17] J. Chen, Y. Chen, Z. Zhu, F. Chen, "Stability and Bifurcation of a Discrete Predator-Prey System with Allee Effect and Other Food Resource for the Predators", Journal of Applied Mathematics and Computing, vol. 69, pp. 529-548, 2023.
[18] K. Zhuang, Z. Wen, "Dynamical Behaviors in a Discrete Predator-prey System", International Journal of Mathematical and Computational Sciences, vol. 5, pp. 8300, 2011.
[19] S. Elaydi, Discrete Chaos Second Edition with Applications in Science and Engineering, Trinity University, 2007.
[20] J. Guckenheimer, P. Holmes, 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983
DOI: https://doi.org/10.18860/ca.v9i2.26674
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nadia Agus Hadinata, Agus Suryanto, Wuryansari Muharini Kusumawinahyu
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.