Analysis Of Korteweg-Type Compressible Fluid Model With Slip Boundary Conditions In 3-Dimensional Half-Space

Suma Inna, Muhammad Manaqib, Ilman Gifari

Abstract


Abstract

The Korteweg fluid model is typically used to describe the flow of two-phase fluids, where phase transitions occur at the interface, recognized by capillary effects. Korteweg extended the Navier-Stokes equations by incorporating capillarity into the equations. This article will demonstrate the solution operator for the resolvent system of the Navier-Stokes-Korteweg model with slip boundary conditions in a 3-dimensional half-space, given the coefficient condition  dengan . The steps to find the solution operator for the resolvent system include reducing the inhomogeneous resolvent system, followed by performing a partial Fourier transform on the homogeneous resolvent system to yield a simple ordinary differential equation solution.


Keywords


Compressible Fluid; Navier Stokes Korteweg; Resolvent Problem; Partial Fourier Transform;

Full Text:

PDF

References


[1] J. Liu, C. M. Landis, H. Gomez, and T. J. R. Hughes, “Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations,” Computer Methods in Applied Mechanics and Engineering, vol. 297, pp. 476–553, Dec. 2015, doi: 10.1016/j.cma.2015.09.007.

[2] R. Danchin and B. Desjardins, “Existence of solutions for compressible fluid models of Korteweg type,” Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 18, no. 1, pp. 97–133, Jan. 2001, doi: 10.1016/S0294-1449(00)00056-1.

[3] H. Hattori and D. Li, “Solutions for Two-Dimensional System for Materials of Korteweg Type,” SIAM J. Math. Anal., vol. 25, no. 1, pp. 85–98, Jan. 1994, doi: 10.1137/S003614109223413X.

[4] H. H. H. Hattori and D. Li, “Global Solutions of a High Dimensional System for Korteweg Materials,” Journal of Mathematical Analysis and Applications, vol. 198, no. 1, pp. 84–97, Feb. 1996, doi: 10.1006/jmaa.1996.0069.

[5] H. Saito, “Compressible Fluid Model of Korteweg Type with Free Boundary Condition: Model Problem,” FE, vol. 62, no. 3, pp. 337–386, 2019, doi: 10.1619/fesi.62.337.

[6] S. Inna, S. Maryani, and H. Saito, “Half-space model problem for a compressible fluid model of Korteweg type with slip boundary condition,” J. Phys.: Conf. Ser., vol. 1494, no. 1, p. 012014, Mar. 2020, doi: 10.1088/1742-6596/1494/1/012014.

[7] Suma Inna, “The existence of R-bounded solution operator for Navier–Stokes–Korteweg model with slip boundary conditions in half space”, [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.10033

[8] S. Inna and H. Saito, “Local Solvability for a Compressible Fluid Model of Korteweg Type on General Domains,” Mathematics, vol. 11, no. 10, 2023, doi: 10.3390/math11102368.

[9] S. Inna, “The existence of R$$ mathcal{R} $$-bounded solution operator for Navier–Stokes–Korteweg model with slip boundary conditions in half space,” Mathematical Methods in the Applied Sciences, vol. 47, no. 11, pp. 8581–8610, Jul. 2024, doi: 10.1002/mma.10033.

[10] S. I. Anisa Salsabila, “SOLUSI MODEL NAVIER STOKES KORTEWEG DENGAN SYARAT BATAS SLIP DI HALF-SPACE BERDIMENSI 3,” vol. 7, Mar. 2024, [Online]. Available: https://doi.org/10.36815/majamath.v7i1

[11] J. Prayugo, S. Inna, M. Mahmudi, and N. Damiati, “SOLUSI MODEL LINEAR NAVIER-STOKES-KORTEWEG DI R_+^3 DENGAN SYARAT BATAS SLIP,” SCI TECH ED MATH, vol. 5, no. 1, pp. 262–277, Apr. 2024, doi: 10.46306/lb.v5i1.554.

[12] D. W. N. Khasanah, S. Inna, M. Y. Wijaya, and S. Indriati, “ANALISIS MODEL LINEAR NAVIER STOKES KORTEWEG DENGAN KONDISI BATAS NEUMANN DI HALF-SPACE BERDIMENSI TIGA”.

[13] S. Inna, A. Alpiansyah, and M. Manaqib, “Solution Operator for the Navier-Stokes-Korteweg Model with Dirichlet Boundary Conditions in Three-Dimensional Space”.

[14] R. Alfiyyah, S. Inna, and M. Liebenlito, “PENYELESAIAN MODEL ALIRAN FLUIDA NAVIER-STOKES- KORTEWEG DI HALF-SPACE PADA RUANG DIMENSI TIGA,” vol. 4, no. 2, 2019.




DOI: https://doi.org/10.18860/ca.v9i2.29048

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Suma’inna Suma’inna, Muhammad Manaqib, Ilman Gifari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.