Reversible Self-Dual Codes over Finite Field
Abstract
Reversible self-dual code is a linear code which combine the properties from self-dual code and reversible code. Previous research shows that reversible self-dual codes have only been developed over field of order 2 and order 4. In this article, we construct reversible self-dual code over any finite field of order F_q , with natural number q>=2. We first examine and prove some of fundamental properties of reversible self-dual code over . After a thorough analysis these, we obtain a new generator matrix of reversible self-dual code. A new generator matrix is derived from existing self-dual and reversible self-dual code over . It will be shown that a new reversible self-dual over can be constructs from one and more existing code by specific algebraic methods. Furthermore, using this construction, we determine the minimum distance of reversible self-dual code and ensuring its optimal performance in various applications.
Keywords
Full Text:
PDFReferences
C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.
S. Ling and C. Xing, Coding Theory: A First Course, 1st ed. Cambridge University Press, 2004. doi: 10.1017/CBO9780511755279.
M. J. Golay, “Notes on digital coding,” Proc IEEE, vol. 37, p. 657, 1949.
E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Be’ery, “Deep Learning Methods for Improved Decoding of Linear Codes,” IEEE J. Sel. Top. Signal Process., vol.
, no. 1, pp. 119–131, Feb. 2018, doi: 10.1109/JSTSP.2017.2788405.
S. Bouyuklieva and M. Harada, “[No title found],” Des. Codes Cryptogr., vol. 28, no. 2, pp. 163–169, 2003, doi: 10.1023/A:1022588407585.
M. Grass and T. A. Gulliver, “On self-dual MDS codes,” in 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada: IEEE, Jul. 2008, pp. 1954–1957. doi: 10.1109/ISIT.2008.4595330.
M. Grassl and T. A. Gulliver, “On circulant self-dual codes over small fields,” Des. Codes Cryptogr., vol. 52, no. 1, pp. 57–81, Jul. 2009, doi: 10.1007/s10623-009-9267-1.
Y. H. Park, “The classification of self-dual modular codes,” Finite Fields Their Appl., vol. 17, no. 5, pp. 442–460, Sep. 2011, doi: 10.1016/j.ffa.2011.02.010.
M. Shi, L. Sok, P. Solé, and S. Çalkavur, “Self-dual codes and orthogonal matrices over large finite fields,” Finite Fields Their Appl., vol. 54, pp. 297–314, Nov. 2018, doi: 10.1016/j.ffa.2018.08.011.
L. Sok, “Explicit Constructions of MDS Self-Dual Codes,” IEEE Trans. Inf. Theory, vol. 66, no. 6, pp. 3603–3615, Jun. 2020, doi: 10.1109/TIT.2019.2954877.
J.-L. Kim and W.-H. Choi, “Self-Dual Codes, Symmetric Matrices, and Eigenvectors,” IEEE Access, vol. 9, pp. 104294–104303, 2021, doi: 10.1109/ACCESS.2021.3099434.
W. H. Choi and J. L. Kim, “An improved upper bound on self-dual codes over finite fields GF(11), GF(19), and GF(23),” Des. Codes Cryptogr., vol. 90, no. 11, pp. 2735–2751, Nov. 2022, doi: 10.1007/s10623-021-00968-3.
J. L. Massey, “Reversible codes,” Inf. Control, vol. 7, no. 3, pp. 369–380, Sep. 1964, doi: 10.1016/S0019-9958(64)90438-3.
Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length codes,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 158–162, Feb. 1995, doi: 10.1109/26.380026.
X. T. Ngo, S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses,” in 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington, DC: IEEE, May 2015, pp. 82–87. doi: 10.1109/HST.2015.7140242.
P. K. Kadbe and M. G. Waje, “Error Detection in Fault-Tolerant Reversible Circuit Using Fredkin Gates,” in ICCCE 2021, vol. 828, A. Kumar and S. Mozar, Eds., in Lecture Notes in Electrical Engineering, vol. 828. , Singapore: Springer Nature Singapore, 2022, pp. 579–585. doi: 10.1007/978-981-16-7985-8_58.
H. J. Kim, W.-H. Choi, and Y. Lee, “Construction of reversible self-dual codes,” Finite Fields Their Appl., vol. 67, p. 101714, Oct. 2020, doi: 10.1016/j.ffa.2020.101714.
H. J. Kim, W.-H. Choi, and Y. Lee, “Designing DNA codes from reversible self-dual codes over G F ( 4 ),” Discrete Math., vol. 344, no. 1, p. 112159, Jan. 2021, doi: 10.1016/j.disc.2020.112159.
DOI: https://doi.org/10.18860/ca.v9i2.29116
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ardi Nur Hidayat
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.