Optimizing Data Classification in Support Vector Machines Using Metaheuristic Algorithms

Qonita Ilmi Awalin, Ika Hesti Agustin, Alfian Futuhul Hadi, Dafik Dafik, R. Sunder

Abstract


To categorize patient diagnosis data related to Chronic Kidney Disease (CKD), this study compares the classification performance of Support Vector Machines (SVM) enhanced by Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). CKD is a severe illness in which the kidneys fail to adequately filter blood and perform their normal functions. This study utilized secondary data consisting of patient conditions and health information. Based on references from CKD-related journals, 15 independent variables and one dependent variable were selected from an initial set of 54 variables. To address the issue of unbalanced data, an oversampling technique was applied, and the data was subsequently split into 80% for training and 20% for testing. During the training phase, SVM-PSO and SVM-GA models were developed, and the gamma value was optimized using the RBF kernel function of SVM. The results indicated that in classifying CKD patient diagnosis data, the SVM-PSO model (97.54% accuracy) outperformed the SVM-GA model (97.37% accuracy). This finding suggests that PSO-based hyperparameter optimization yields a superior model for data classification

Keywords


Chronic Kidney Disease; classification; SVM-PSO; SVM-GA

Full Text:

PDF

References


[1]

Ariani, A., Kunci-Penyakit, K., & Kronis, G. (2019). Klasifikasi Penyakit Ginjal Kronis Menggunakan K-Nearest Neighbor. In Prosiding Annual Research Seminar (Vol. 5, Issue 1).

http://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Dise

[2]

Cormack, R. M. (1971). A Review of Classification. In Source: Journal of the Royal Statistical Society. Series A (General) (Vol. 134, Issue 3).

[3]

Nilsson, N. J. (1996). Introduction to Machine Learning An Early Draft of A Proposed Textbook.

[4]

Agarwal, S., Jain, N., & Dholay, S. (2015). Adaptive Testing and Performance Analysis Using Naive Bayes Classifier. Procedia Computer Science, 45(C), 70–75. https://doi.org/10.1016/j.procs.2015.03.088.

[5]

Staub, S., Karaman, E., Kaya, S., Karapınar, H., & Güven, E. (2015). Artificial Neural Network and Agility. Procedia - Social and Behavioral Sciences, 195, 1477–1485. https://doi.org/10.1016/j.sbspro.2015.06.448.

[6]

Saputra, D., Dharmawan, W. S., & Irmayani, W. (2022). Performance Comparison of the SVM and SVM-PSO Algorithms for Heart Disease Prediction. International Journal of Advances in Data and Information Systems, 3(2), 74–86. https://doi.org/10.25008/ijadis.v3i2.1243

[7]

Awalullaili, F. O., Ispriyanti, D., & Widiharih, T. (2023). Klasifikasi Penyakit Hipertensi Menggunakan Metode SVM Grid Search dan SVM Genetic Algorithm (GA). Jurnal Gaussian, 11(4), 488–498.

[1]

Agarwal, S., Jain, N., & Dholay, S. (2015). Adaptive Testing and Performance Analysis Using Naive Bayes Classifier. Procedia Computer Science, 45(C), 70–75. https://doi.org/10.1016/j.procs.2015.03.088.

[2]

Ariani, A., Kunci-Penyakit, K., & Kronis, G. (2019). Klasifikasi Penyakit Ginjal Kronis Menggunakan K-Nearest Neighbor. In Prosiding Annual Research Seminar (Vol. 5, Issue 1).

http://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Dise

[3]

Awalullaili, F. O., Ispriyanti, D., & Widiharih, T. (2023). Klasifikasi Penyakit Hipertensi Menggunakan Metode SVM Grid Search dan SVM Genetic Algorithm (GA). Jurnal Gaussian, 11(4), 488–498.

[4]

Cormack, R. M. (1971). A Review of Classification. In Source: Journal of the Royal Statistical Society. Series A (General) (Vol. 134, Issue 3).

[5]

Nilsson, N. J. (1996). Introduction to Machine Learning An Early Draft of A Proposed Textbook.

[6]

Saputra, D., Dharmawan, W. S., & Irmayani, W. (2022). Performance Comparison of the SVM and SVM-PSO Algorithms for Heart Disease Prediction. International Journal of Advances in Data and Information Systems, 3(2), 74–86. https://doi.org/10.25008/ijadis.v3i2.1243

[7]

Staub, S., Karaman, E., Kaya, S., Karapınar, H., & Güven, E. (2015). Artificial Neural Network and Agility. Procedia - Social and Behavioral Sciences, 195, 1477–1485. https://doi.org/10.1016/j.sbspro.2015.06.448.

[8]

Gliselda, V. K. (2021). Diagnosis dan Manajemen Penyakit Ginjal Kronis (PGK). Jurnal Medika Hutama, 2(04 Juli), 1135-1141.




DOI: https://doi.org/10.18860/ca.v9i2.29320

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Qonita Ilmi Awalin, Ika Hesti Agustin, Alfian Futuhul Hadi, Dafik Dafik, R. Sunder

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.