Identification and Modelling Tuberculosis Incidence Risk Factors in West Java with Negative Binomial Mixed Model Random Forest
Abstract
Keywords
Full Text:
PDFReferences
[1] R. Arisanti et al., “Integrating Generalized Linear Mixed Models With Extreme Neural Network: Enhancing Pulmonary Tuberculosis Risk Modeling In West Java, Indonesia,” pp. 1–24, 2024.
[2] S. Sulistyawati and A. W. Ramadhan, “Risk Factors for Tuberculosis in an Urban Setting in Indonesia: A Case-control Study in Umbulharjo I, Yogyakarta,” J. UOEH, vol. 43, no. 2, pp. 165–171, Jun. 2021, doi: 10.7888/juoeh.43.165.
[3] C. E. McCulloch, “Maximum Likelihood Algorithms for Generalized Linear Mixed Models,” J. Am. Stat. Assoc., vol. 92, no. 437, p. 162, Mar. 1997, doi: 10.2307/2291460.
[4] X. Zhang et al., “Negative binomial mixed models for analyzing microbiome count data,” BMC Bioinformatics, vol. 18, no. 1, pp. 1–10, 2017, doi: 10.1186/s12859-016-1441-7.
[5] S. D. Kachman, “An Introduction To Generalized Linear Mixed Models Stephen D . Kachman,” Statistics (Ber)., vol. 24, pp. 59–73, 2008, [Online]. Available: http://armyconference.org/ACAS2003CD/ACAS2003/McCullochCharles/mcculloch.pdf
[6] E. P. Liski, “Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup,” Int. Stat. Rev., vol. 81, no. 3, pp. 482–483, Dec. 2013, doi: 10.1111/insr.12042_24.
[7] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, 2021, doi: 10.38094/jastt20165.
[8] Lakshmi Prasanna and S. Mehrotra, “Comparative Analysis of Machine Learning Algorithms on Mental Health Dataset,” Lect. Notes Networks Syst., vol. 719 LNNS, no. 2, pp. 599–606, 2023, doi: 10.1007/978-981-99-3758-5_54.
[9] T. W. Utami, “Analisis Regresi Binomial Negatif Untuk Mengatasi Overdispersion Regresi Poisson Pada Kasus Demam Berdarah Dengue,” J. Stat., vol. 1, no. 2, pp. 59–65, 2013, [Online]. Available: https://jurnal.unimus.ac.id/index.php/statistik/article/view/961
[10] A. A. Yirga, S. F. Melesse, H. G. Mwambi, and D. G. Ayele, “Negative binomial mixed models for analyzing longitudinal CD4 count data,” Sci. Rep., vol. 10, no. 1, p. 16742, Oct. 2020, doi: 10.1038/s41598-020-73883-7.
[11] P. R. Donald, B. J. Marais, and C. E. Barry, “Age and the epidemiology and pathogenesis of tuberculosis,” Lancet, vol. 375, no. 9729, pp. 1852–1854, May 2010, doi: 10.1016/S0140-6736(10)60580-6.
DOI: https://doi.org/10.18860/cauchy.v10i2.29750
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Restu Arisanti, Resa Septiani Pontoh, Sri Winarni, Nisa Akbarilah Putri, Stefany Maurin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








