Integration of DBSCAN Cluster Analysis with Multigroup Moderation Path Analysis

Hafizh Syihabuddin Al Jauhar, Solimun Solimun, Rahma Fitriani

Abstract


This study examines the application of integration between DBSCAN cluster analysis and multigroup moderation path analysis to analyse patterns of waste management behaviour in Batu City. DBSCAN was used to cluster the data based on density, resulting in two main clusters as well as some noise data. The first cluster consisted of 189 respondents, while the second cluster included 196 respondents, with the remaining 10 data identified as noise. The DBSCAN clustering results showed a silhouette index of 0.664, indicating good clustering quality in terms of compactness and separation between clusters. After the data was clustered, each cluster was analysed using multigroup moderation path analysis to assess the relationship between environmental quality, understanding of 3R-based waste management, and economic usefulness of waste with facilities and infrastructure variables as moderators. The results showed that clusters with good quality facilities had a stronger understanding of 3R-based waste management and its economic usefulness. This finding underscores the importance of facilities and infrastructure in influencing community waste management behaviour patterns.

Keywords


DBSCAN; path analysis; multigroup moderation; waste management; facilities and infrastructure; Batu City

Full Text:

PDF

References


[1] A. A. R. Fernandes and Solimun, Analisis Regresi dalam Pendekatan Fleksibel: Ilustrasi dengan Paket Program R. UB Press, 2021.

[2] Solimun, A. A. E. Fernandes, and Nurjannah, Metode Statistika Multivariat Pemodelan Persamaan Struktural (SEM) Pendekatan WarpPLS. UB Press, 2017.

[3] S. Nugroho, Statistika Multivariat Terapan. UNIB Press, 2008.

[4] I. D. Id, A. Astrid, and E. Mahdiyah, “Modifikasi DBSCAN (Density-Based Spatial Clustering With Noise) pada Objek 3 Dimensi,” Jurnal Komputer Terapan, vol. 3, no. 1, pp. 41–52, 2017, [Online]. Available: http://jurnal.pcr.ac.id

[5] E. T. K. Dewi, A. Agoestanto, and S. Sunarmi, “Metode Least Trimmed Square (LTS) Dan Mm-Estimation Untuk Mengestimasi Parameter Regresi Ketika Terdapat Outlier,” UNNES Journal of Mathematics, vol. 5, no. 1, pp. 47–54, 2016.

[6] T. N. Tran, K. Drab, and M. Daszykowski, “Revised DBSCAN algorithm to cluster data with dense adjacent clusters,” Chemometrics and Intelligent Laboratory Systems, vol. 120, pp. 92–96, Jan. 2013, doi: 10.1016/j.chemolab.2012.11.006.

[7] P. B. Nagpal and P. A. Mann, “Comparative Study of Density based Clustering Algorithms,” Int J Comput Appl, vol. 27, no. 11, pp. 44–77, Dec. 2011, doi: 10.5120/3341-4600.

[8] S. U. Rehman, S. Asghar, S. Fong, and S. Sarasvady, “DBSCAN: Past, present and future,” in The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014), IEEE, Feb. 2014, pp. 232–238. doi: 10.1109/ICADIWT.2014.6814687.

[9] S. Solimun, A. A. R. Fernandes, I. Rahmawati, R. Isaskar, L. Muflikhah, and F. L. N. Rasyidah, “Cluster Integration Path Analysis to Model PT Pelindo II’s Market Mapping,” International Journal of Circuits, Systems and Signal Processing, vol. 15, pp. 1833–1841, Jan. 2022, doi: 10.46300/9106.2021.15.198.




DOI: https://doi.org/10.18860/cauchy.v10i1.29847

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Hafizh Syihabuddin Al Jauhar, Solimun Solimun, Rahma Fitriani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.