Modelling Geographically Weighted Truncated Spline Regression Using Maximum Likelihood Estimation for Human Development Disparities
Abstract
A development of nonparametric truncated spline regression, Geographically Weighted Regression Spline Truncated (GWSTR) incorporates spatial effects in the modelling of nonlinear relationships between the response and predictor variables. This research utilizes the Maximum Likelihood Estimation (MLE) technique to estimate the parameters of the model. The first-order truncated spline with a single knot yielded a minimal Generalized cross-validation (GCV) value of 1. 729781, suggesting a high level of accuracy in the model. Four weighting functions were evaluated: Gaussian Kernel, Exponential Kernel, Bi-Square Kernel, and Tri-Cube Kernel. Among these, the Bi-Square weighting function performed the best, achieving a coefficient of determination of 99.999%, demonstrating the model’s capability to explain nearly all data variability effectively. GWSTR proves to be a robust method for capturing complex nonlinear relationships while accounting for spatial variations, making it a valuable tool for spatial data analysis across various disciplines.
Keywords
Full Text:
PDFReferences
[1] United Nations Development Programmer (UNDP), “Human Development Report 2023-24,” UNDP. Accessed: Jan. 01, 2025. [Online]. Available: https://hdr.undp.org/content/human-development-report-2023-24
[2] Badan Pusat Statistik, “Indeks Pembangunan Manusia 2023,” 2023. Accessed: Dec. 20, 2024. [Online]. Available: https://www.bps.go.id/id/publication/2024/05/13/8f77e73a66a6f484c655985a/indeks-pembangunan-manusia-2023.html
[3] Badan Pusat Statistik Sultra, “Indeks Pembangunan Manusia (IPM) Provinsi Sulawesi Tenggara tahun 2023 mencapai 72,94,” Badan Pusat Stistik Sultra. Accessed: Dec. 20, 2024. [Online]. Available: https://sultra.bps.go.id/id/pressrelease/2023/12/01/1058/the-human-development-index--hdi--of-southeast-sulawesi-province-in-2023-will-reach-72-94.html
[4] Norman R. Draper and Harry Smith, Applied Regression Analysis. John Wiley & Sons, Inc, 1998. doi: doi.org/10.1002/9781118625590.
[5] Adji Achmad Rinaldo Fernandes and Solimun, Analisis Regresi Dalam Pendekatan Fleksibel. Malang: UB Press, 2021. Accessed: Jan. 26, 2025. [Online]. Available: http://www.ubpress.ub.ac.id
[6] Randall L. Eubank, Spline Smoothing and Nonparametric Regression. New York: Marcel Dekker.
[7] A. S. Suriaslan, I. N. Budiantara, and V. Ratnasari, “Nonparametric regression estimation using multivariable truncated splines for binary response data,” MethodsX, vol. 14, Jun. 2025, http://doi.org/10.1016/j.mex.2024.103084
[8] W. Somayasa and G. Ngurah Adhi Wibawa, “Pemodelan Indeks Pembangunan Manusia Di Sulawesi Tenggara Tahun 2017-2020 Menggunakan Metode Regresi Data Panel.” [Online]. Available: www.sultra.bps.go.id
[9] M. N. Afiat, Z. Saenong, and Dewangga Puspa, “Pengaruh Indeks Pembangunan Manusia Dan Pertumbuhan Ekonomi Terhadap Pengangguran Di Sulawesi Tenggara,” JEMBA(Jurnal Ekonomi, Manajemen, Bisnis, dan Akuntansi, pp. 571–580, 2024, Accessed: Feb. 03, 2025. [Online]. Available: http://bajangjournal.com/index.php/JEMBA
[10] R. Putra, M. G. Fadhlurrahman, and Gunardi, “Determination of the best knot and bandwidth in geographically weighted truncated spline nonparametric regression using generalized cross validation,” MethodsX, vol. 10, Jan. 2023, http://doi.org/10.1016/j.mex.2022.101994
[11] P. J. . Green and B. W. . Silverman, Nonparametric regression and generalized linear models : a roughness penalty approach. Chapman & Hall/CRC, 2000.
[12] J. P. Lesage, “Spatial Econometrics,” 1998. [Online]. Available: http://www.econ.utoledo.edu.
[13] L. Anselin, Spatial Econometrics: Methods and Models, vol. 4. in Studies in Operational Regional Science, vol. 4. Dordrecht: Springer Netherlands, 1988. http://doi.org/10.1007/978-94-015-7799-1
[14] H. Ilmi, S. Prangga, U. Mulawarman Jl Barong Tongkok No, K. Gunung Kelua, and K. Timur, “Geographically Weighted Spline Nonparametric Regression dengan Fungsi Pembobot Bisquare dan Gaussian Pada Tingkat Pengangguran Terbuka Di Pulau Kalimantan,” 2021. [Online]. Available: www.unipasby.ac.id
[15] S. Sifriyani, “Simultaneous Hypothesis Testing of Multivariable Nonparametric Spline Regression in the GWR Model,” Int J Stat Probab, vol. 8, no. 4, p. 32, 2019, http://doi.org/10.5539/ijsp.v8n4p32
[16] C. P. S. Purnamasari and Y. Widyaningsih, “Perbandingan Performa Bandwidth CV, AICc, dan BIC pada Model Geographically Weighted Regression (Aplikasi pada Data Pengangguran di Pulau Jawa),” Inferensi, vol. 1, no. 1, p. 71, Oct. 2023, http://doi.org/10.12962/j27213862.v1i1.19130
[17] S. H. Kartiko and I. N. Budiantara, “Development of nonparametric geographically weighted regression using truncated spline approach.”
DOI: https://doi.org/10.18860/cauchy.v10i1.31381
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Laode Muhammad Saris

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.