Application of Mixture of Weibull and Pareto (IV) Distribution to Health and Environmental Data
Abstract
Weibull and Pareto distributions are widely used in several areas, including lifetime data modelling and reliability analysis. In real-life practice, these distributions may not capture the various distributional properties of certain datasets. The use of finite mixture models enhanced the performances of these distributions in adaptability and accuracy. This study focused on the Mixture Weibull Pareto (IV) distribution proposed by [1], which has been used in modelling insurance claims, and it showed superior performance as compared with other distributions. The current study applied this distribution to health and environmental datasets. The result showed that the Mixture Weibull Pareto (IV) distribution performed better than other distributions, using Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Kolmogorov-Smirnov test (KS test) for the significance of the distribution.
Keywords
Full Text:
PDFReferences
I. Ghosh et al., “On the Mixtures of Weibull and Pareto (IV) Distribution: An Alternative to Pareto Distribution,” DOI, 2018.
A. E. B. A. Ahmad and M. G. M. Ghazal, “Exponentiated additive Weibull distribution,” Reliab Eng Syst Saf, vol. 193, no. September 2019, p. 106663, 2020, doi: 10.1016/j.ress.2019.106663.
G. M. Cordeiro, M. do C. S. Lima, A. E. Gomes, C. Q. da-Silva, and E. M. M. Ortega, “The gamma extended Weibull distribution,” J Stat Distrib Appl, vol. 3, no. 1, pp. 7–19, Dec. 2016, doi: 10.1186/s40488-016-0043-2.
M. Bebbington, C. D. Lai, and R. Zitikis, “A flexible Weibull extension,” Reliab Eng Syst Saf, vol. 92, no. 6, pp. 719–726, 2007, doi: 10.1016/j.ress.2006.03.004.
G. S. Mudholkar and D. K. Srivastava, “Exponentiated Weibull family for analyzing bathtub failure-rate data,” IEEE Trans Reliab, vol. 42, no. 2, pp. 299–302, Jun. 1993, doi: 10.1109/24.229504.
M. Xie, Y. Tang, and T. N. Goh, “A modi ® ed Weibull extension with bathtub-shaped failure rate function,” vol. 76, 2002.
I. Elbatal, M. Elgarhy, and B. M. G. Kibria, “Alpha Power Transformed Weibull-G Family of Distributions: Theory and Applications,” Journal of Statistical Theory and Applications, vol. 20, no. 2, pp. 340–354, Jun. 2021, doi: 10.2991/jsta.d.210222.002.
C. Lee, F. Famoye, and O. Olumolade, “Beta-Weibull distribution: Some properties and applications to censored data,” Journal of Modern Applied Statistical Methods, vol. 6, no. 1, pp. 173–186, 2007, doi: 10.22237/jmasm/1177992960.
G. M. Cordeiro, E. M. M. Ortega, and S. Nadarajah, “The Kumaraswamy Weibull distribution with application to failure data,” J Franklin Inst, vol. 347, no. 8, pp. 1399–1429, 2010, doi: 10.1016/j.jfranklin.2010.06.010.
G. O. Silva, E. M. M. Ortega, and G. M. Cordeiro, “The beta modified Weibull distribution,” Lifetime Data Anal, vol. 16, no. 3, pp. 409–430, 2010, doi: 10.1007/s10985-010-9161-1.
B. He, W. Cui, and X. Du, “An additive modified Weibull distribution,” Reliab Eng Syst Saf, vol. 145, pp. 28–37, 2016, doi: 10.1016/j.ress.2015.08.010.
N. Alsadat, V. B. V. Nagarjuna, A. S. Hassan, M. Elgarhy, H. Ahmad, and E. M. Almetwally, “Marshall-Olkin Weibull-Burr XII distribution with application to physics data,” AIP Adv, vol. 13, no. 9, Sep. 2023, doi: 10.1063/5.0172143.
S. A. Alyami, I. Elbatal, N. Alotaibi, E. M. Almetwally, H. M. Okasha, and M. Elgarhy, “Topp–Leone Modified Weibull Model: Theory and Applications to Medical and Engineering Data,” Applied Sciences (Switzerland), vol. 12, no. 20, Oct. 2022, doi: 10.3390/app122010431.
S. A. Akdaǧ, H. S. Bagiorgas, and G. Mihalakakou, “Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean,” Appl Energy, vol. 87, no. 8, pp. 2566–2573, 2010, doi: 10.1016/j.apenergy.2010.02.033.
A. M. Razali and A. A. Al-Wakeel, “Mixture Weibull distributions for fitting failure times data,” Appl Math Comput, vol. 219, no. 24, pp. 11358–11364, 2013, doi: 10.1016/j.amc.2013.05.062.
B. O. Oluyede, S. Foya, G. Warahena-Liyanage, and S. Huang, “The log-logistic weibull distribution with applications to lifetime data,” Austrian Journal of Statistics, vol. 45, no. 3, pp. 43–69, 2016, doi: 10.17713/ajs.v45i3.107.
M. Anwar and A. Bibi, “The Half-Logistic Generalized Weibull Distribution,” J Probab Stat, vol. 2018, no. 1, 2018, doi: 10.1155/2018/8767826.
O. Job and Solomon Adeyinka Ogunsanya, “Weibull Log Logistic {Exponential} Distribution: Some Properties and Application to Survival Data,” International Journal of Statistical Distributions and Applications, vol. 8, no. 1, p. 1, 2022, doi: 10.11648/j.ijsd.20220801.11.
A. Asgharzadeh, S. Nadarajah, and F. Sharafi, “Weibull Lindley distribution,” Revstat-Statistical Journal, vol. 16, no. 1, pp. 87–113, 2018, doi: 10.1063/5.0059262.
A. S. Ogunsanya, W. B. Yahya, T. M. Adegoke, C. Iluno, O. Aderele, and M. I. Ekum, “A New Three-Parameter Weibull Inverse Rayleigh Distribution: Theoretical Development and Applications ,” Mathematics and Statistics, vol. 9, no. 3, pp. 249–272, Mar. 2021, doi: 10.13189/ms.2021.090306.
A. Akinsete, F. Famoye, and C. Lee, “The beta-Pareto distribution,” Statistics (Ber), vol. 42, no. 6, pp. 547–563, Dec. 2008, doi: 10.1080/02331880801983876.
A. Alzaatreh, F. Famoye, and C. Lee, “Weibull-pareto distribution and its applications,” Commun Stat Theory Methods, vol. 42, no. 9, pp. 1673–1691, 2013, doi: 10.1080/03610926.2011.599002.
L. M. Zea, R. B. Silva, M. Bourguignon, A. M. Santos, and G. M. Cordeiro, “The Beta Exponentiated Pareto Distribution with Application to Bladder Cancer Susceptibility,” Int J Stat Probab, vol. 1, no. 2, Oct. 2012, doi: 10.5539/ijsp.v1n2p8.
E. M. Almetwally, H. H. Ahmad, and H. M. Almongy, “Extended Odd Weibull Pareto Distribution, Estimation and Applications,” J Stat Appl Probab, vol. 11, no. 3, pp. 795–809, Sep. 2022, doi: 10.18576/jsap/110304.
A. Ibrahim Al-Omari, A. M. H Al-khazaleh, and L. M. Alzoubi, “A GENERALIZATION OF THE NEW WEIBULL PARETO DISTRIBUTION,” 2020.
V. Rajagopalan, R. A. Ganaie, and V. P. Soumya, “A New Exponentiated Two Parameter Distribution with Biometric Applications,” Article in International Journal of Engineering and Management Research, vol. 06, no. 10, pp. 56–65, 2021, [Online]. Available: https://www.researchgate.net/publication/355943018
E. T. Lee and J. Wang, Statistical Method for Survival Data Analysis, 3rd edn., vol. 476. New York: John Wiley & Sons, 2003.
DOI: https://doi.org/10.18860/cauchy.v10i2.31431
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Tolulope Olubunmi Adeniji, Akinwumi Sunday Odeyemi, Chioneso Show Marange

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






