Explicit Determinant and Inverse Formulas of Skew Circulant Matrices with Alternating Fibonacci Numbers
Abstract
Keywords
Full Text:
PDFReferences
D. Fu, Z. Jiang, Y. Cui, and S. T. Jhang, “New fast algorithm for optimal design of block digital filters by skew‐cyclic convolution,” IET Signal Processing, vol. 8, no. 6, pp. 633–638, Aug. 2014, doi: 10.1049/iet-spr.2013.0384.
Z. Liu, F. Zhang, C. Ferreira, and Y. Zhang, “On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations,” Computers & Mathematics with Applications, vol. 109, pp. 30–43, Mar. 2022, doi: 10.1016/j.camwa.2022.01.027.
W. Qu, S.-L. Lei, and S.-W. Vong, “Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations,” International Journal of Computer Mathematics, vol. 91, no. 10, pp. 2232–2242, Oct. 2014, doi: 10.1080/00207160.2013.871001.
Maxrizal, I. G. N. Y. Hartawan, P. Jana, and B. D. A. Prayanti, “Modified Public Key Cryptosystem Based On Circulant Matrix,” Journal of Physics: Conference Series, vol. 1503, no. 1, p. 012007, Jul. 2020, doi: 10.1088/1742-6596/1503/1/012007.
D. Valsesia and E. Magli, “Compressive signal processing with circulant sensing matrices,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, May 2014, pp. 1015–1019. doi: 10.1109/ICASSP.2014.6853750.
P. J. Davis, Circulant Matrices. New York: John Wiley & Sons, 1979.
R. E. Cline, R. J. Plemmons, and G. Worm, “Generalized inverses of certain Toeplitz matrices,” Linear Algebra and its Applications, vol. 8, no. 1, pp. 25–33, Feb. 1974, doi: 10.1016/0024-3795(74)90004-4.
Y. Gong, Z. Jiang, and Y. Gao, “On Jacobsthal and Jacobsthal-Lucas Circulant Type Matrices,” Abstract and Applied Analysis, vol. 2015, pp. 1–11, 2015, doi: 10.1155/2015/418293.
E. Altınışık, N. Feyza Yalçın, and Ş. Büyükköse, “Determinants and inverses of circulant matrices with complex Fibonacci numbers,” Special Matrices, vol. 3, no. 1, Apr. 2015, doi: 10.1515/spma-2015-0008.
Y. Zheng and S. Shon, “Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix,” Abstract and Applied Analysis, vol. 2015, pp. 1–10, 2015, doi: 10.1155/2015/760823.
H. Pan and Z. Jiang, “VanderLaan Circulant Type Matrices,” Abstract and Applied Analysis, vol. 2015, pp. 1–11, 2015, doi: 10.1155/2015/329329.
A. C. F. Bueno, “Right circulant matrices with ratio of the elements of Fibonacci and geometric sequence,” Notes on Number Theory and Discrete Mathematics, vol. 22, no. 3, pp. 79–83, 2016.
S. Shen, W. Liu, and L. Feng, “Explicit inverses of generalized Tribonacci circulant type matrices,” Hacettepe Journal of Mathematics and Statistics, pp. 1–11, Dec. 2019, doi: 10.15672/hujms.552204.
M. Yaşar Kartal, “Determinants and inverses of circulant matrices with Gaussian Pell numbers,” Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 38, no. 2, pp. 349–356, 2022.
F. Yilmaz, A. Ertaş, and S. Yamaç Akbiyik, “Determinants of circulant matrices with Gaussian nickel Fibonacci numbers,” Filomat, vol. 37, no. 25, pp. 8683–8692, 2023, doi: 10.2298/FIL2325683Y.
S. Guritman, Jaharuddin, T. W. Mas’oed, and Siswandi, “A fast computation for eigenvalues of circulant matrices with arithmetic sequence,” MILANG Journal of Mathematics and Its Applications, vol. 19, no. 1, pp. 69–80, Jun. 2023, doi: 10.29244/milang.19.1.69-80.
S. Guritman, “Simple formulations on circulant matrices with alternating Fibonacci,” Communications of the Korean Mathematical Society, vol. 38, no. 2, pp. 341–354, Apr. 2023.
Siswandi, S. Guritman, N. Aliatiningtyas, and T. Wulandari, “A computation perspective for the eigenvalues of circulant matrices involving geometric progression,” Jurnal Matematika UNAND, vol. 12, no. 1, p. 65, Jan. 2023, doi: 10.25077/jmua.12.1.65-77.2023.
S. Guritman, Jaharuddin, T. Wulandari, and Siswandi, “An Efficient Method for Computing the Inverse and Eigenvalues of Circulant Matrices with Lucas Numbers,” Journal of Advances in Mathematics and Computer Science, vol. 39, no. 4, pp. 10–23, Mar. 2024, doi: 10.9734/jamcs/2024/v39i41879.
F. Yeşil Baran, “The eigenvalues of circulant matrices with generalized Tetranacci numbers,” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 11, no. 2, pp. 417–423, Feb. 2021, doi: 10.17714/gumusfenbil.830575.
Z. Jiang, J. Yao, and F. Lu, “On Skew Circulant Type Matrices Involving Any Continuous Fibonacci Numbers,” Abstract and Applied Analysis, vol. 2014, pp. 1–10, 2014, doi: 10.1155/2014/483021.
Y. Zheng and S. Shon, “Exact determinants and inverses of generalized Lucas skew circulant type matrices,” Applied Mathematics and Computation, vol. 270, pp. 105–113, Nov. 2015, doi: 10.1016/j.amc.2015.08.021.
X. Jiang and K. Hong, “Explicit inverse matrices of Tribonacci skew circulant type matrices,” Applied Mathematics and Computation, vol. 268, pp. 93–102, Oct. 2015, doi: 10.1016/j.amc.2015.05.103.
M. F. Azhari, T. W. Mas’oed, S. Guritman, Jaharuddin, and Siswandi, “Determinan, invers, dan nilai eigen matriks skew circulant dengan entri barisan geometri,” MILANG Journal of Mathematics and Its Applications, vol. 19, no. 2, pp. 129–140, Dec. 2023, doi: 10.29244/milang.19.2.129-140.
Z. Jiang and Y. Wei, “Skew Circulant Type Matrices Involving the Sum of Fibonacci and Lucas Numbers,” Abstract and Applied Analysis, vol. 2015, pp. 1–9, 2015, doi: 10.1155/2015/951340.
Y. Wei, Y. Zheng, Z. Jiang, and S. Shon, “Determinants, inverses, norms, and spreads of skew circulant matrices involving the product of Fibonacci and Lucas numbers,” Journal of Mathematics and Computer Science, vol. 20, no. 01, pp. 64–78, Sep. 2019, doi: 10.22436/jmcs.020.01.08.
J. Yao and J. Sun, “Explicit Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with the Pell-Lucas Numbers,” Journal of Advances in Mathematics and Computer Science, vol. 26, no. 2, pp. 1–16, Jan. 2018, doi: 10.9734/JAMCS/2018/38768.
Q. Fan, Y. Wei, Y. Zheng, and Z. Jiang, “On determinants, inverses, norms, and spread of skew circulant matrices involving the product of Pell and Pell-Lucas numbers,” Journal of Mathematics and Computer Science, vol. 31, no. 02, pp. 225–239, May 2023, doi: 10.22436/jmcs.031.02.08.
T. Wulandari and S. Guritman, “A fast computation for the determinant, inverse, and eigenvalues of skew circulant matrices involving Fibonacci numbers,” 2024, p. 030008. doi: 10.1063/5.0230982.
P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, 2nd ed. San Diego: Academic Press, 1985.
DOI: https://doi.org/10.18860/cauchy.v10i2.32358
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sapto Mukti Handoyo, Sugi Guritman, Teduh Wulandari Mas'oed, Jaharuddin Jaharuddin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







