Bayesian Approach in Estimating Parameters of Zero-Inflated Negative Binomial Regression Model Using Cauchy Prior: Simulation Study on Pneumonia
Abstract
Keywords
Full Text:
PDFReferences
A.C.CameronandP. K.Trivedi, Regression Analysis of Count Data. Cambridge university press, 2013. DOI: 10.1017/CBO9781139013567.
J. M. Hilbe, Negative Binomial Regression. Cambridge University Press, 2011. DOI: 10.1017 /CBO9780511973420.
C. C. Astuti, A. O. B. Puka, and A. Wiguna, “Zero-inflated negative binomial modeling in infant death case due to pneumonia in east java province,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 4, pp. 1835–1844, 2023. DOI: 10.30598/barekengvol17iss4pp1835-1 844.
M.I. A. Saputro and M. F. Qudratullah, “Estimation of zero-inflated negative binomial regression parameters using the maximum likelihood method (case study: Factors affecting infant mortality in wonogiri in 2015),” in Proceeding International Conference on Science and Engineering, vol. 4, 2021, pp. 240–254. Available online.
K. R. Katianda, R. Goejantoro, and A. M. A. Satriya, “Estimasi parameter model regresi linier dengan pendekatan bayes,” EKSPONENSIAL, vol. 11, no. 2, pp. 127–132, 2021. DOI: 10.30872 /eksponensial.v11i2.653.
S. Roohi, M. R. Baneshi, A. Noroozi, A. Hajebi, and A. Bahrampour, “Comparing bayesian re gression and classic zero-inflated negative binomial on size estimation of people who use alcohol,” Journal of Biostatistics and Epidemiology, vol. 2, no. 4, pp. 173–179, Oct. 2017. Available online.
M.S.Workie and A. G. Azene, “Bayesian negative binomial logit hurdle and zero-inflated model for characterizing smoking intensity,” Journal of Big Data, vol. 8, no. 1, 2021. DOI: 10.1186/s4 0537-021-00452-8.
A.Gelman,A.Jakulin, M.G.Pittau, and Y. S. Su, “A weakly informative default prior distribution for logistic and other regression models,” Annals of Applied Statistics, vol. 2, no. 4, pp. 1360–1383, 2008. DOI: 10.1214/08-AOAS191.
I. Ntzoufras, Bayesian modeling using WinBUGS. John Wiley and Sons, 2009. DOI: 10.1002/97 80470434567.
C. Harrell, B. Ghosh, and R. Bowden, Simulation Using ProModel (McGraw-Hill series in in dustrial engineering and management science). McGraw-Hill/Higher Education, 2004. Available online.
A.M.Law,W.D.Kelton, andW.D.Kelton, Simulation modeling and analysis. Mcgraw-hill New York, 2007. Available online.
D.J.Timur, “Profil Kesehatan Provinsi Jawa Timur Tahun 2023,” Dinas Kesehatan Provinsi Jawa Timur, 2024. Available online.
D. E. Puspitasari and F. Syahrul, “Faktor Risiko Pneumonia pada Balita Berdasarkan Status Imu nisasi Campak dan Status ASI Eksklusif,” Journal of Universitas Airlangga, vol. 3, no. 1, pp. 69 81, 2015. Available online.
R. Rigustia, L. Zeffira, and A. T. Vani, “Faktor Risiko yang Berhubungan dengan Kejadian Pneu monia pada Balita di Puskesmas Ikur Koto Kota Padang,” Health and Medical Journal, vol. 1, no. 1, pp. 22–29, 2019. DOI: 10.33854/heme.v1i1.215.
Y. K. Banhae, Y. M. Abanit, and D. Namuwali, “Faktor Risiko yang Berhubungan dengan Ke jadian Pneumonia pada Balita di Kota Kupang,” Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, vol. 13, no. 3, pp. 1099–1106, 2023. DOI: 10.32583/pskm.v13i3.1138.
F.FamoyeandJ.S.Preisser, “Marginalized zero-inflated generalized Poisson regression,” Journal of Applied Statistics, vol. 45, no. 7, pp. 1247–1259, 2018. DOI: 10.1080/02664763.2017.1364 717.
A. M. Garay, E. M. Hashimoto, E. M. Ortega, and V. H. Lachos, “On estimation and influence diagnostics for zero-inflated negative binomial regression models,” Computational Statistics & Data Analysis, vol. 55, no. 3, pp. 1304–1318, 2011. DOI: 10.1016/j.csda.2010.09.019.
A.M.Garay,V.H.Lachos, and H. Bolfarine, “Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model,” Journal of Applied Statistics, vol. 42, no. 6, pp. 1148–1165, 2015. DOI: 10.1080/02664763.2014.995610.
H. Zamani and N. Ismail, “Functional form for the zero-inflated generalized poisson regression model,” Communications in Statistics- Theory and Methods, vol. 43, no. 3, pp. 515–529, 2014. DOI: 10.1080/03610926.2012.665553.
L. J. Bain and M. Engelhardt, Introduction to Probability and Mathematical Statistics. Duxbury Press Belmont, CA, 2000. Available online.
R. Fitriani, L. N. Chrisdiana, and A. Efendi, “Simulation on the Zero Inflated Negative Binomial (ZINB) to Model Overdispersed, Poisson Distributed Data,” IOP Conference Series: Materials Science and Engineering, vol. 546, no. 5, 2019. DOI: 10.1088/1757-899X/546/5/052025.
E. H. Payne, M. Gebregziabher, J. W. Hardin, V. Ramakrishnan, and L. E. Egede, “An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data,” Communications in Statistics-Simulation and Computation, vol. 47, no. 6, pp. 1722–1738, 2018. DOI: 10.1080/03610918.2017.1323223.
DOI: https://doi.org/10.18860/cauchy.v10i2.33245
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Santi Wahyu Salsabila, Achmad Efendi, Nurjannah Nurjannah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







