Performance Analysis of ARIMA, LSTM, and Hybrid ARIMA-LSTM in Forecasting the Composite Stock Price Index

Andi Illa Erviani Nensi, Mahda Al Maida, Khairil Anwar Notodiputro, Yenni Angraini, Laily Nissa Atul Mualifah

Abstract


This study evaluates the performance of ARIMA, LSTM, and hybrid ARIMA-LSTM models in predicting the closing and opening prices of the Indonesia Stock Exchange Composite Index (IHSG) over various periods (2007-2020, 2007-2022, and 2007-2024). For the LSTM model, a lag of 1 was chosen based on MAPE analysis, showing strong dependence on the previous day’s price. Different learning rates (0.01, 0.001, 0.0001) and batch sizes (16, 32) were tested on various network architectures. Results indicate that while ARIMA effectively captures linear patterns, LSTM consistently outperforms with lower MAPE values—2.27% for closing and 2.02% for opening prices—especially with a simple (1-50-1) architecture and a learning rate of 0.001. The hybrid ARIMA(0,1,1)-LSTM(1-50-1) model showed competitive results, achieving MAPE of 2.00% for closing and 1.74% for opening prices using batch size 16. However, its success depends on ARIMA’s ability to model linear components. Key findings emphasize LSTM’s dominance in accuracy, the importance of parameter tuning, and the effectiveness of simple network structures. The hybrid approach holds promise when linear and nonlinear data components are clearly separable. This research offers methodological insights for optimizing stock price prediction models and practical guidance for model configuration, contributing to the advancement of financial market forecasting.


Keywords


ARIMA; LSTM; hybrid model; stock price forecasing, time series analysis

Full Text:

PDF

References


[1] A. Gara et al., “Overview of the Blue Gene/L system architecture,” IBM J. Res. Dev., vol. 49, no. 2–3, pp. 195–212, 2005, doi: 10.1147/rd.492.0195.

[2] R. Umami, “Pengaruh Nilai Tukar, Suku Bunga, Dan Inflasi Terhadap Harga Saham Di Suatu Perusahaan,” J. Stud. Manaj. dan Bisnis, vol. 5, no. 2, pp. 85–89, 2020, doi: 10.21107/jsmb.v5i2.6658.

[3] T. H. Bantahari et al., “Faktor-Faktor Yang Mempengaruhi Indeks Harga Saham Gabungan Di Bursa Efek Indonesia Periode 2018-2021 Factors Affecting the Joint Stock Price Index on the Indonesia Stock Exchange,” J. EMBA, vol. 10, no. 4, pp. 1577–1588, 2022.

[4] F. Sumantri and U. Latifah, “Analisa Pengaruh Marko Ekonomi Terhadap Indeks Harga Saham Gabungan Periode 2015-2019,” Dialekt. J. Ekon. dan Ilmu Sos., vol. 6, no. 2, pp. 11–21, 2021, doi: 10.36636/dialektika.v6i2.617.

[5] S. Rukmana, “Pengaruh Suku Bunga Terhadap Indeks Harga Saham Gabungan (IHSG) Dimediasi Nilai Tukar Pada Sektor Properti Di Bursa Efek Indonesia (BEI),” J. Econ., vol. 7, no. 1, pp. 17–24, 2019.

[6] N. Najibullah, “Pengaruh Indeks Global Terhadap Indeks Harga Saham Gabungan (Ihsg) : Bukti Empiris Menggunakan Data Harian,” J. Mhs. Akunt. Samudra, vol. 4, no. 4, pp. 171–178, 2023, doi: 10.33059/jmas.v4i4.8303.

[7] W. F. Velicer and P. C. Molenaar, Time Series Analysis for Psychological Research, no. October. 2012. doi: 10.1002/9781118133880.hop202022.

[8] G. J. Evans and M. G. Kendall, “Time Series.,” Oper. Res. Q., vol. 26, no. 1, p. 112, 1975, doi: 10.2307/3007831.

[9] B. A. Hakim, K. A. Notodiputro, Y. Angraini, L. Nissa, and A. Mualifah, “TIME SERIES MODEL FOR TRAIN PASSENGER FORECASTING,” vol. 19, no. 2, pp. 755–766, 2025.

[10] R. Ayu, R. Gernowo, D. Fisika, F. Sains, U. Diponegoro, and S. E-, “Metode Autoregressive Integrated Movingaverage (Arima) Dan Metode Adaptive Neuro Fuzzy Inference System (Anfis) Dalam Analisis Curah Hujan,” Berk. Fis., vol. 22, no. 1, pp. 41–48, 2019.

[11] A. T. Nguyen, D. H. Pham, B. L. Oo, Y. Ahn, and B. T. H. Lim, Predicting air quality index using attention hybrid deep learning and quantum-inspired particle swarm optimization, vol. 11, no. 1. Springer International Publishing, 2024. doi: 10.1186/s40537-024-00926-5.

[12] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

[13] J. Duan, Y. Gong, J. Luo, and Z. Zhao, “Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer,” Sci. Rep., vol. 13, no. 1, pp. 1–16, 2023, doi: 10.1038/s41598-023-36620-4.

[14] Arief Fadhlurrahman Rasyid, Dewi Agushinta R., and Dharma Tintri Ediraras, “Deep Learning Methods In Predicting Indonesia Composite Stock Price Index (IHSG),” Int. J. Comput. Inf. Technol., vol. 10, no. 5, pp. 209–217, 2021, doi: 10.24203/ijcit.v10i5.153.

[15] A. Yusuf, “Prediksi Indeks Harga Saham Gabungan (Ihsg) Menggunakan Long Short-Term Memory,” Epsil. J. Mat. Murni Dan Terap., vol. 15, no. 2, p. 124, 2022, doi: 10.20527/epsilon.v15i2.5026.

[16] U. G. Mada, “ANALISIS PREDIKSI INDEKS HARGA SAHAM GABUNGAN ( IHSG ) MENGGUNAKAN METODE NONLINEAR AUTO- REGRESSIVE EXOGENOUS MODEL ( NARX ) NEURAL NETWORK DAN METODE LONG SHORT-TERM MEMORY ( LSTM ) Untuk memenuhi sebagian persyaratan Mencapai derajat Sarjana S-2 diajuk,” 2023.

[17] S. Ayub and Y. Z. Jafri, “Comparative Study of an ANN-ARIMA Hybrid Model for Predicting Karachi Stock Price,” vol. 10, no. 1, pp. 1–9, 2020, doi: 10.5923/j.ajms.20201001.01.

[18] Y. Susanto, “Peramalan Curah Hujan dengan Pendekatan Model ARIMA, Feed Forward Neural Network dan Hybrid (ARIMA-NN) di Banyuwangi,” pp. 1–77, 2016.

[19] D. Pratiwi and M. Hadijati, “Inflation modeling in Indonesia using hybrid autoregressive integrated moving average (ARIMA)-neural network (NN),” IOP Conf. Ser. Mater. Sci. Eng., vol. 1115, no. 1, p. 012058, 2021, doi: 10.1088/1757-899x/1115/1/012058.

[20] C. Ma, J. Wu, H. Hu, Y. N. Chen, and J. Y. Li, “Predicting Stock Prices Using Hybrid LSTM and ARIMA Model,” IAENG Int. J. Appl. Math., vol. 54, no. 3, pp. 424–432, 2024.

[21] L. N. A. Mualifah, A. M. Soleh, and K. A. Notodiputro, “Comparison of GARCH, LSTM, and Hybrid GARCH-LSTM Models for Analyzing Data Volatility,” Int. J. Adv. Soft Comput. its Appl., vol. 16, no. 2, pp. 150–165, 2024, doi: 10.15849/IJASCA.240730.10.

[22] I. Magfirrah, M. Ilma, K. A. Notodiputro, Y. Angraini, and L. N. A. Mualifah, “Comparative Analysis of ARIMA and LSTM for Forecasting Maximum Wind Speed in Kupang City, East Nusa Tenggara,” Jambura J. Math., vol. 6, no. 2, pp. 169–175, 2024, doi: 10.37905/jjom.v6i2.25834.

[23] W. A. Pratiwi, A. F. Rizki, K. A. Notodiputro, Y. Angraini, and L. N. A. Mualifah, “the Comparison of Arima and Rnn for Forecasting Gold Futures Closing Prices,” Barekeng, vol. 19, no. 1, pp. 397–406, 2025, doi: 10.30598/barekengvol19iss1pp397-406.

[24] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A Comparison of ARIMA and LSTM in Forecasting Time Series,” Proc. - 17th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2018, no. December, pp. 1394–1401, 2018, doi: 10.1109/ICMLA.2018.00227.

[25] S. M. Al-Selwi et al., “RNN-LSTM: From applications to modeling techniques and beyond—Systematic review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 5, p. 102068, 2024, doi: 10.1016/j.jksuci.2024.102068.

[26] H. Ihsan, Irwan, and A. I. E. Nensi, “Implementation of Backpropagation and Hybrid Arima-Nn Methods in Predicting Accuracy Levels of Rainfall in Makassar City,” Barekeng, vol. 18, no. 4, pp. 10–14, 2024, doi: 10.30598/barekengvol18iss4pp2435-2448.




DOI: https://doi.org/10.18860/cauchy.v10i2.33379

Refbacks



Copyright (c) 2025 Andi Illa Erviani Nensi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.