Trace of the Adjacency Matrix of the Star Graph and Complete Bipartite Graph Raised to a Positive Integer Power
Abstract
Keywords
Full Text:
PDFReferences
[1] K. Datta and D. Banerjee, “Algorithm for computing the trace of the powers of a matrix,” Linear Algebra and Its Applications, vol. 15, no. 1, pp. 1–13, 1976.
[2] M. Chu, “Symbolic calculation of the trace of the powers of a tridiagonal matrix,” Journal
of Computational and Applied Mathematics, vol. 13, no. 1, pp. 47–53, 1985.
[3] V. Pan, “Computing the trace of a matrix power,” Linear Algebra and Its Applications,
vol. 128, pp. 151–163, 1990.
[4] A. Zarelua, “Traces of a matrix and euler’s congruence,” Journal of Mathematical Sciences, vol. 148, no. 2, pp. 197–204, 2008.
[5] H. Avron and J. Daitch, “All-pairs shortest paths in unweighted graphs: Algorithms and applications,” ACM Computing Surveys (CSUR), vol. 42, no. 1, pp. 1–33, 2010.
[6] C. Brezinski, G. D’Angelo, G. De Donno, L. D’Auria, P. Roldan, and M. Soriano, “Recent advances in the analysis of large-scale networks,” Journal of Applied Mathematics, vol. 2012,pp. 1–14, 2012.
[7] J. Pahade and M. Jha, “Trace of positive integer power of adjacency matrix,” Global Journal of Pure and Applied Mathematics, vol. 13, no. 6, pp. 1–7, 2017.
[8] F. Aryani and M. Solihin, “Trace matriks real berpangkat bilangan bulat negatif,” Jurnal Sains Matematika dan Statistika, vol. 3, no. 2, pp. 16–23, 2017.
[9] H. Anton and C. Rorres, “Elementary linear algebra,” John Wiley Sons, Inc., 2010.
[10] F. Aryani, A. Nugraha, M. Faisal, Helsivianingsih, and C. Marzuki, “Trace matriks ketetanggaan n x n berpangkat -2, -3, -4,” Proceding SNTIKI 12, pp. 543–553, 2020.
[11] K. Rosen, “Discrete mathematics and its applications,” Mc Graw Hill, 2019.
[12] F. Aryani, D. Puspita, C. Marzuki, and Y. Muda, “Trace of the adjacency matrix n x n of the cycle graph to the power of two to five,” Barekeng Jurnal ilmu Matematika dan Terapan, vol. 16, pp. 393–408, 2022.
[13] R. Munir, “Matematika diskrit,” Informatika ITB, 2019
[14] P. Karmakar and S. Sarkar, “Some results on matrix exponentiation,” Journal of Linear and Nonlinear Algebra, vol. 1, no. 1, pp. 1–10, 2015.
[15] P. Das and P. Karmakar, “Some properties of matrix exponentiation,” Advances in Linear Algebra and Matrix Theory, vol. 5, no. 04, pp. 150–158, 2015.
[16] B. Kolman and D. R. Hill, Introductory linear algebra. Prentice-Hall, Inc., 2000.
[17] G. Strang, “Introduction to linear algebra,” Wellesley-Cambridge Press, 2009.
[18] D. C. Lay, “Linear algebra and its applications,” Pearson Education Inc., 2012.
[19] D. Poole, “Linear algebra: A modern introduction,” Cengage Learning, 2014.
DOI: https://doi.org/10.18860/cauchy.v10i2.34255
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Corry Corazon Marzuki, Fitri Aryani, Sri Basriati, Yuslenita Muda

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







