Cluster Analysis Of Cities/Districts In West Kalimantan Based On Stunting Response Indicators Using The Calinski Harabasz Index

Tegar Rama Priyatna, yundari yundari, Nur'ainul Miftahul Huda

Abstract


The stunting rate in West Kalimantan has reached 27%, mainly due to the government's inability to prioritise regions for essential services and education, especially for adolescents and pregnant women. This study aims to explain the role of modified K-Means and CHI methods in forming optimal clusters and interpreting their conditions. Eight research variables, sourced from BPS and SIGA in 2023, were used: number of adolescents receiving counselling, informed consents, complication cases, aslokon expenditure, aslokon stock, population growth rate, population density, and life expectancy. These variables were validated using PCA with the Kaiser and PVE approaches. Clustering was done by analysing the data for each variable and the characteristics of the objects using the Euclidean distance, determining the centroid values, and iterating until the results stabilised. The clusters were evaluated from one to seven to find the optimal amount using CHI. The results identified five clusters: cluster 1 (relatively poor, three objects), cluster 2 (inferior, four objects), cluster 3 (good, three objects), cluster 4 (exquisite, three objects) and cluster 5 (good, one object).

Full Text:

PDF

References


[1] C. Aryu, Buku epidemiologi stunting. Fakultas Kedokteran Universitas Diponegoro, 2020. Available online.

[2] H. Wardoyo, Laporan semester I penyelenggaraan percepatan penurunan stunting tahun 2023. Badan Kependudukan dan Keluarga Berencana Nasional (BKKBN), Tech. Rep., 2023. Available online.

[3] P. A. Ariawan, N. P. Sastra, and I. M. Sudarma, "Clustering data remunerasi PNS menggunakan metode k-means clustering dan local outlier factor," Majalah Ilmiah Teknologi Elektro, vol. 19, no. 1, pp. 33–39, Jan. 2020. doi: 10.24843/MITE.2020.v19i01.P05.

[4] R. Cahyanto, A. R. Chrismanto, and D. D. Sebastian, "Pengelompokan komentar dataset Sentipol dengan modified k-means clustering," Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 3, pp. 531–540, 2020. doi: 10.28932/jutisi.v6i3.3006. Available online.

[5] I. M. K. Karo and H. Hendriyana, "Klasifikasi penderita diabetes menggunakan algoritma machine learning dan z-score," Jurnal Teknologi Terpadu, vol. 8, no. 2, pp. 94–99, 2022. doi: 10.54914/jtt.v8i2.564. Available online.

[6] S. Setyaningtyas, B. I. Nugroho, and H. Arif Z, "Tinjauan pustaka sistematis: Penerapan data mining teknik clustering algoritma k-means," Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 10, no. 2, pp. 52–61, 2022. doi: 10.21063/jtif.2022.V10.2.52-61. Available online.

[7] R. T. D. Kurniawati, R. Rahmawati, and Y. Wilandari, "Pengelompokan kualitas udara ambien menurut kabupaten/kota di Jawa Tengah menggunakan analisis klaster," Jurnal Gaussian, vol. 4, no. 2, pp. 393–402, 2015. Available online.

[8] H. Aulawi, W. A. Kurniawan, and F. A. Rachman, "Analisis sentimen kepuasan driver terhadap kebijakan baru sistem order Gojek," Jurnal Sains dan Teknologi ISTP, vol. 14, no. 1, pp. 86–94, 2020. doi: 10.59637/jsti.v14i1.55.

[9] M. I. Hutagalung and S. Sriani, "Pengelompokan data penyakit THT menggunakan algoritma k-means clustering: Grouping of ENT disease data using k-means clustering algorithm," MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1568–1577, 2024. Available online.

[10] D. R. S. Saputro, "Algoritme partitioning around medoid (PAM) dengan Calinski-Harabasz index untuk clustering data outlier," UNEJ e-Proceeding, pp. 22–29, 2022. Available online.

[11] A. M. Sikana and A. M. Wijayanto, "Analisis perbandingan pengelompokan indeks pembangunan manusia Indonesia tahun 2019 dengan metode partitioning dan hierarchical clustering," J. Ilmu Komput., vol. 14, no. 2, pp. 66–78, 2021. Available online.

[12] X. Wang and Y. Xu, "An improved index for clustering validation based on silhouette index and Calinski-Harabasz index," IOP Conference Series: Materials Science and Engineering, pp. 1–6, 2024. doi: 10.1088/1757-899X/569/5/052024.

[13] D. A. Rahmah, "Analisis klaster berdasarkan indikator kesejahteraan rakyat menggunakan metode self organizing maps (SOM)," 2022. Available online.

[14] S. Sujatha and A. S. Sona, "New fast k-means clustering algorithm using modified centroid selection method," International Journal of Engineering Research & Technology (IJERT), vol. 2, no. 2, pp. 1–9, 2013. Available online.

[15] D. Arkham and D. Swanjaya, "K-means method for clustering public service assessment of government organization in Kediri City," Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), pp. 155–160, 2020. Available online.

[16] M. R. Nugroho, I. E. Hendrawan, and P. P. Purwantoro, "Penerapan algoritma k-means untuk klasterisasi data obat pada Rumah Sakit Asri," Nuansa Informatika, vol. 16, no. 1, pp. 125–133, 2022. Available online.

[17] Lan, Berbagai penyebab stunting di Melawi. Dokumen tidak dipublikasikan, 2023. Available online.

[18] E. Ramadhani, N. Salwa, and M. S. Mazaya, "Identifikasi faktor-faktor yang mempengaruhi angka harapan hidup di Sumatera tahun 2018 menggunakan analisis regresi spasial pendekatan area," Journal of Data Analysis, vol. 3, no. 2, pp. 62–75, 2020. Available online.

[19] S. Hakim, "Angka stunting masih tinggi di lima kecamatan di Kapuas Hulu." Diakses dari forum online.

[20] D. K. Hulu, "Kasus stunting di Kapuas Hulu menurun," Artikel Surat Kabar, 2022. Available online.

[21] D. Hardiyanti and Y. Yuniarti, "Analisis sosial ekonomi masyarakat yang memiliki bayi stunting di Desa Sebayan Kabupaten Sambas," Ekodestinasi, vol. 2, no. 2, pp. 85–92, 2024. doi: 10.59996/ekodestinasi.v2i2.133. Available online.




DOI: https://doi.org/10.18860/cauchy.v11i1.34510

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Tegar Rama Priyatna, yundari yundari, Nur'ainul Miftahul Huda

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.