Forecasting Indonesia’s Composite Stock Price Index with Semiparametric Cubic and Local Gaussian Polynomials

Mita Kornilia Dewi, Nanang Susyanto

Abstract


The Composite Stock Price Index (CSPI) serves as a crucial indicator for assessing the performance of the Indonesian capital market, reflecting both economic conditions and investor confidence. Its movements are influenced by macroeconomic factors such as exchange rates, inflation, interest rates, and commodity prices, including oil and gold. Parametric models often fail to capture nonlinear patterns, whereas nonparametric approaches lack efficiency and interpretability. To address this gap, this study develops a semiparametric regression model that integrates a cubic polynomial for parametric effects with local polynomial estimators using Gaussian kernels for nonparametric effects. The results show that the semiparametric model is effective, yielding an MSE of 0.569747, a MAPE of 8.60%, and an R^2 of 85%. This confirms its ability to capture nonlinear dynamics in the stock market. Moreover, the model provides accurate forecasting and practical insights for investors in portfolio strategies as well as for policymakers in managing financial market stability.


Keywords


semiparametric; polynomial; Gaussian function; forecasting; CSPI.

Full Text:

PDF

References


[1] D. B. Pinem, “Analysis of global stock exchange index, foreign exchange rate, interest rate, and inflation rate influences CSPI in Indonesia Stock Exchange,” European Journal of Business and Management Research, vol. 4, no. 6, 2019. doi: 10.24018/ejbmr.2019.4.6.162.

[2] F. Ma, Y. Guo, J. Chevallier, and D. Huang, “Macroeconomic attention, economic policy uncertainty, and stock volatility predictability,” International Review of Financial Analysis, vol. 81, p. 102339, 2022. doi: 10.1016/j.irfa.2022.102339.

[3] F. D. Sumaryana, N. Nugraha, M. Sari, and T. Heryawan, “The influence of macroeconomic fundamentals and investor sentiment on the Indonesian stock exchange,” Proceedings of the 8th Global Conference on Business, Management, and Entrepreneurship (GCBME 2023), vol. 288, pp. 8–22, 2024. doi: 10.2991/978-94-6463-443-3_2.

[4] M. Fuad and A. Imamudin, “Determinants of the composite stock price index (IHSG) on the Indonesia Stock Exchange,” Journal of Economics Research and Social Sciences, vol. 5, no. 1, 2021. doi: 10.18196/jerss.v5i1.11002.

[5] L. R. A. Doho, S. M. Somé, and J. M. Banto, “Inflation and West African sectoral stock price indices: An asymmetric kernel method analysis,” Emerging Markets Review, vol. 54, p. 100987, 2023. doi: 10.1016/j.ememar.2022.100987.

[6] B. Xu and R. Xu, “Assessing the carbon intensity of the heavy industry in China: Using a nonparametric econometric model,” Environmental Impact Assessment Review, vol. 98, p. 106925, 2023. doi: 10.1016/j.eiar.2022.106925.

[7] D. Wied, “Semiparametric distribution regression with instruments and monotonicity,” Labour Economics, vol. 90, p. 102565, 2024. doi: 10.1016/j.labeco.2024.102565.

[8] X. Chen and Y. Yi, “Information bounds for Gaussian copula parameter in stationary semiparametric Markov models,” Statistics & Probability Letters, vol. 216, p. 110254, 2025. doi: 10.1016/j.spl.2024.110254.

[9] A. W. Wening, I. N. Budiantara, and I. Zain, “Semiparametric regression curve estimation for longitudinal data using mixed spline truncated and Fourier series estimator,” Journal of Physics: Conference Series, vol. 1538, p. 012061, 2020. doi: 10.1088/1742-6596/1538/1/012061.

[10] J. L. Tobias and T. N. Bond, “Semiparametric Bayesian estimation in an ordinal probit model with application to life satisfaction across countries, age and gender,” Journal of Econometrics, in press, p. 105917, 2025. doi: 10.1016/j.jeconom.2024.105917.

[11] V. Fibriyani, N. Chamidah, and T. Saifudin, “Estimating time series semiparametric regression model using local polynomial estimator for predicting inflation rate in Indonesia,” Journal of King Saud University - Science, vol. 36, no. 1, p. 103549, 2024. doi: 10.1016/j.jksus.2024.103549.

[12] G. M. Martin, D. T. Frazier, W. Maneesoonthorn, R. Loaiza-Maya, F. Huber, G. Koop, J. Maheu, D. Nibbering, and A. Panagiotelis, “Bayesian forecasting in economics and finance: A modern review,” International Journal of Forecasting, vol. 39, no. 3, 2023. doi: 10.1016/j.ijforecast.2023.05.002.

[13] A. T. Fitriyah, N. Chamidah, and T. Saifudin, “Prediction of paddy production in Indonesia using semiparametric time series regression least square spline estimator,” Data and Metadata, vol. 4, 2025. doi: 10.56294/dm2025527.

[14] D. Aydın, N. Chamidah, B. Lestari, S. Mohammad, and E. Yılmaz, “Local polynomial estimation for multi-response semiparametric regression models with right-censored data,” Communications in Statistics - Simulation and Computation, 2025. doi: 10.1080/03610918.2025.2476595.

[15] N. M. Shimaponda-Mataa, E. Tembo-Mwase, M. Gebreslasie, T. N. Achia, and S. Mukaratirwa, “Modelling the influence of temperature and rainfall on malaria incidence in four endemic provinces of Zambia using semiparametric Poisson regression,” Acta Tropica, vol. 175, pp. 60–70, 2017. doi: 10.1016/j.actatropica.2017.08.014.

[16] B.-J. So, H.-H. Kwon, D. Kim, and S. O. Lee, “Modeling of daily rainfall sequence and extremes based on a semiparametric Pareto tail approach at multiple locations,” Journal of Hydrology, vol. 529, pp. 1442–1450, 2015. doi: 10.1016/j.jhydrol.2015.08.037.

[17] M. Billio, R. Casarin, M. Costola, and M. Iacopini, “COVID-19 spreading in financial networks: A semiparametric matrix regression model,” Econometrics and Statistics, vol. 29, pp. 113–131, 2024. doi: 10.1016/j.ecosta.2021.10.003.

[18] Suliyanto, T. Saifudin, M. Rifada, and D. Amelia, “Statistical inferences and applications of nonparametric regression models based on Fourier series,” MethodsX, vol. 14, p. 103217, 2025. doi: 10.1016/j.mex.2025.103217.

[19] M. Zulfadhli, I. N. Budiantara, and V. Ratnasari, “Nonparametric regression estimator of multivariable Fourier series for categorical data,” MethodsX, vol. 13, p. 102983, 2024. doi: 10.1016/j.mex.2024.102983.

[20] W. Marbun, Suparti, and M. Maruddani, “Modeling of composite stock price index (CSPI) using semiparametric regression truncated spline based on GUI R,” Journal of Physics: Conference Series, vol. 1524, p. 012096, 2020. doi: 10.1088/1742-6596/1524/1/012096.

[21] W. Zhou and R. Harris, “Semi-parametric single-index predictive regression models with cointegrated regressors,” Journal of Econometrics, 2024. doi: 10.1016/j.jeconom.2023.105577.

[22] H. Zhu, Y. Zhang, Y. Li, and H. Lian, “Semiparametric function-on-function quantile regression model with dynamic single-index interactions,” Computational Statistics & Data Analysis, vol. 182, p. 107727, 2023. doi: 10.1016/j.csda.2023.107727.

[23] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with Applications in R. Springer, 2013. doi: 10.1007/978-1-4614-7138-7.

[24] J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications. London: Chapman and Hall, 1996, pp. 57–197. doi: 10.1007/978-1-4899-0027-8.

[25] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer, 2009. doi: 10.1007/978-0-387-84858-7.

[26] D. Y. Lin and Z. Ying, “Semiparametric and nonparametric regression analysis of longitudinal data,” Journal of the American Statistical Association, vol. 96, no. 453, pp. 103–126, 2001. doi: 10.1198/016214501750333018.

[27] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. Morgan Kaufmann, an imprint of Elsevier, 2012. Available at: url{https://www.sciencedirect.com/book/9780123814791/data-mining}.

[28] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, 1986, pp. 37–43. doi: 10.1201/9781315140919.

[29] D. Rosadi, Analisa Runtun Waktu. Yogyakarta: Gadjah Mada University Press, 2021. [30] J. K. Saoudi, Y. Falloul, and M. (incomplete), “A comparison of LSTM, GRU, and XGBoost for forecasting Morocco’s yield curve,” Mathematical Modeling and Computing, vol. 11, no. 3, pp. 674–681, 2024. doi: 10.23939/mmc2024.03.674.




DOI: https://doi.org/10.18860/cauchy.v10i2.36180

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mita Kornilia Dewi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.