Pricing Double Barrier Options with Time-Varying Interest using Standard, Antithetic, and Control Variate Monte Carlo

Bella Cindy Thalita, Isnani Darti

Abstract


This study develops an integrated framework for pricing double barrier options under time-varying interest rates by combining ARIMA-based forecasting with Monte Carlo simulations. Monthly U.S. Treasury Bill rates from 2019–2025 are modeled using the ARIMA(2,2,0) process to generate dynamic risk-free rates, which are incorporated into three Monte Carlo approaches standard, antithetic variate, and control variate. Tesla Inc. stock prices are used as the underlying asset modeled through Geometric Brownian Motion. The integration of ARIMA-based dynamic rates within the Monte Carlo framework enables more realistic pathwise discounting and improves simulation convergence. The results show that the control variate method provides the most accurate and stable estimates for knock-in call options, whereas the antithetic variate technique yields superior accuracy for knock-in put, knock-out call, and knock-out put options. Overall, the combined use of ARIMA-forecasted interest rates and variance-reduction techniques enhances the precision and stability of double barrier option valuation under dynamic financial conditions.


Keywords


antithetic variate; ARIMA; control variate; double barrier option; Monte Carlo simulation

Full Text:

PDF

References


Kustodian Sentral Efek Indonesia,Statistik pasar modal indonesia desember 2023, Jakarta.

Boston Consulting Group and World Economic Forum,Global retail investor outlook 2024, https://www.bcg.com/about/partner-ecosystem/world-economic-forum/global-retail-investor-outlook, Accessed on 30 August 2025.

J. C. Hull,Options, Futures, and Other Derivatives, 10th. London: Pearson Education, 2021.

R. L. McDonald,Derivatives Markets, 3rd. Boston: Pearson, 2013.

S. E. Shreve,Stochastic Calculus for Finance II: Continuous-Time Models. New York: Springer, 2004.

P. Glasserman,Monte Carlo Methods in Financial Engineering. New York: Springer, 2003.

R. B. Silalahi, D. C. Lesmana, and R. Budiarti, “Determining the value of double barrier option using standard monte carlo, antithetic variate, and control variate methods,” BAREKENG: Journal of Mathematics and Its Applications, vol. 17, no. 2, pp. 1017–1026, 2023.doi:10.30598/barekengvol17iss2pp1017-1026.

C. E. Murwaningtyas, W. S. Haryono, M. A. Uge, and T. Kristofel, “Perbandingan metode monte carlo antithetic variate dan control variate dalam penentuan harga opsi barrier knock-out,”Euler: Jurnal Ilmiah Matematika, Sains dan Teknologi, vol. 12, no. 1, pp. 37–44, 2024.doi:10.37905/euler.v12i1.25128.

Y. Jerbi and R. Bouzid, “Barrier options pricing under stochastic volatility using monte carlo simulation,”International Journal of Finance & Banking Studies, vol. 12, no. 3, pp. 32–39, 2023.doi:10.20525/ijfbs.v12i3.2851.

I. Kamila, E. H. Nugrahani, and D. C. Lesmana, “Metode monte carlo untuk menentukan harga opsi barrier dengan suku bunga tak konstan,”Jurnal Matematika dan Aplikasi, vol. 16, no. 1, pp. 55–68, 2017.

Yahoo Finance,Tesla inc. (tsla) historical data, https://finance.yahoo.com, Accessed 20 August 2025, 2023.

U.S. Department of the Treasury,Daily treasury yield curve rates, https://home.treasury.gov, Accessed 20 August 2025, 2025.

M. Nuryadi, T. D. Astuti, E. S. Utami, and M. Budiantara,Dasar-Dasar Statistik Penelitian. Yogyakarta: SIBUKU Media, 2017.

W. W. S. Wei,Time Series Analysis: Univariate and Multivariate Methods, 2nd. Boston: Pearson Addison Wesley, 2006.

W. Enders,Applied Econometric Time Series. USA: John Wiley & Sons, 1995. [16] R. H. Shumway and D. S. Stoffer,Time Series Analysis and Its Applications: With R Examples, 4th. New York: Springer, 2017.

R. H. Shumway and D. S. Stoffer,Time Series Analysis and Its Applications: With R Examples, 4th. New York: Springer, 2017.R. J. Hyndman and G. Athanasopoulos,Forecasting: Principles and Practice, 2nd. Melbourne: OTexts, 2018.

R. J. Hyndman and G. Athanasopoulos,Forecasting: Principles and Practice, 2nd. Melbourne: OTexts, 2018.

J. J. Montañó, A. Palmer, A. Sesé, and B. Cajal, “Using the r-mape index as a resistant measure of forecast accuracy,” Psicothema, vol. 25, no. 4, pp. 500–506, 2013.




DOI: https://doi.org/10.18860/cauchy.v10i2.37010

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Bella Cindy Thalita, Isnani Darti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.