Nonparametric Path Modeling with Double Resampling for Waste Economic Value Utilization: Simulation-Based Performance Comparison

Kamelia Hidayat, Adji Achmad Rinaldo Fernandes, Atiek Iriany, Solimun Solimun, Moh. Zhafran Hidayatulloh, Fachira Haneinanda Junianto

Abstract


Waste generation exceeding landfill capacity highlights the urgency of realizing its economic value. This study analyzes the effect of Quality of Facilities and Infrastructure (X1) and Use of Waste Banks (X2) on Waste Management-Based 3R (Y1) and Waste Economic Value Utilization (Y2) using a truncated spline nonparametric path model. This study evaluates the performance of a nonparametric path analysis model based on truncated spline combined with a double resampling. Data were collected using a Likert scale questionnaire on community perceptions of waste’s economic benefits in Batu City. Simulation results show that the Jackknife-Bootstrap method achieves the lowest average bias (0.058), outperforming single resampling approaches such as Single-Bootstrap (0.178) and Single-Jackknife (0.176). Empirical findings indicate that improvements in the Quality of Facilities and Infrastructure  (X1) and Waste Bank Use (X2) significantly enhance Waste Management Based 3R (Y1) and Utilization of Waste Economic Value (Y2). The truncated spline model reveals a saturation effect, where the marginal benefits of X1 and X2 decrease beyond a threshold. Furthermore, Y1 positively affects Y2, emphasizing the importance of efficient waste management in enhancing economic value. The results support policies promoting balanced infrastructure development, community empowerment, and institutional innovation for sustainable circular economy implementation.


Keywords


Bootstrap; Double Resampling; Economic Value of Waste; Jackknife; Nonparametric Path Analysis.

Full Text:

PDF

References


[1] Solimun, Multivariate Analysis: Structural Equation Modelling (SEM) Lisrel and Amos. Malang: Universitas Negeri Malang, 2002.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York: Springer, 2009.

[3] U. Rohma, A. A. R. Fernandes, S. Astutik, and S. Solimun, “Development of nonparametric path function using hybrid truncated spline and kernel for modeling waste-to-economic value behavior,” Barekeng: Journal of Mathematical and Applied Sciences, 2023.

[4] M. K. Trésor, “Threshold effect of public investment on economic growth in the democratic republic of congo: Regime change approach,” International Journal of Social Science and Human Research, vol. 8, no. 4, pp. 2543–2550, 2025.

[5] S. Guoyan, A. Khaskheli, S. A. Raza, and M. Ahmed, “Nonlinear impact of municipal solid waste recycling and energy efficiency on environmental performance and economic growth: Evidence from non-parametric causality-in-quantiles,” Environmental Science and Pollution Research International, vol. 11, pp. 16 066–16 081, 2022. doi: 10.1007/s11356-021-16721-1.

[6] Q. Li and J. S. Racine, Nonparametric Econometrics: Theory and Practice. Princeton University Press, 2007.

[7] J. Shao and D. Tu, The Jackknife and Bootstrap, 2nd. New York: Springer, 2012.

[8] M. F. Papalia, Solimun, and N. Nurjannah, “Comparison of resampling efficiency levels of jackknife and double jackknife in path analysis,” Barekeng: Journal of Mathematical and Applied Sciences, 2023.

[9] A. A. R. Fernandes, I. N. Budiantara, B. W. Otok, and Suhartono, “Reproducing kernel hilbert space for penalized regression multi-predictors: Case in longitudinal data,” International Journal of Mathematical Analysis, vol. 8, no. 37–40, pp. 1951–1961, 2014.

[10] A. A. R. Fernandes and Solimun, Research Data Analysis Methods: Regression Approach. Malang: Universitas Brawijaya Press, 2021.

[11] Solimun, A. A. R. Fernandes, and N. Nurjannah, Multivariate Statistical Methods: Structural Equation Modeling (SEM) of the WarpPLS Approach. Malang: UB Press, 2017.

[12] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. Boca Raton: CRC Press, 1993.

[13] R. Reinhart, “Performance of jackknife resampling method for land mapping,” Journal of Computer Science and Information Systems, vol. 6, no. 1, pp. 91–91, 2018.

[14] S. Ma’unah, S. Mariani, and Sugiman, “Estimation of skewness using the bootstrap method and the jackknife method,” Unnes Journal of Mathematics, vol. 6, no. 2, pp. 143–152, 2017. doi: 10.15294/UJM.V6I2.11828.

[15] A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their Application. Cambridge: Cambridge University Press, 1997.

[16] C. J. Diciccio and J. P. Romano, “Robust permutation tests for correlation and regression coefficients,” Journal of the American Statistical Association, vol. 115, no. 532, pp. 1815–1827, 2020. doi: 10.1080/01621459.2019.1671193.

[17] P. Hall, The Bootstrap and Edgeworth Expansion. New York: Springer, 1992.

[18] R. Davidson and J. G. MacKinnon, “Improving the reliability of bootstrap tests,” Journal of Econometrics, vol. 141, no. 2, pp. 351–377, 2007. doi: 10.1016/j.jeconom.2006.10.005.

[19] R. Beran, “Prepivoting test statistics: A bootstrap view of asymptotic refinements,” Statistical Science, vol. 33, no. 2, pp. 175–189, 2018. doi: 10.1214/17-STS629.

[20] C. Wu, “Jackknife and other resampling methods in survey sampling: Theory and applications,” Annual Review of Statistics and Its Application, vol. 8, pp. 1–26, 2021. doi: 10.1146/annurev-statistics-040620-041554.

[21] S. N. Lahiri, Resampling Methods for Dependent Data. New York: Springer, 2003.

[22] P. Hall and M. A. Martin, “On bootstrap resampling and permutation tests for ranked data,” Biometrika, vol. 101, no. 2, pp. 401–414, 2014. doi: 10.1093/biomet/ast071.

[23] J. Miller and A. H. Welsh, “Bootstrap–jackknife bias correction for complex survey data,” Australian & New Zealand Journal of Statistics, vol. 62, no. 3, pp. 330–353, 2020. doi: 10.1111/anzs.12298.

[24] B. F. J. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology, 3rd. Boca Raton: CRC Press, 2006.

[25] S. Lee and G. A. Young, “Parametric bootstrap methods for high-dimensional regression models,” Biometrika, vol. 106, no. 2, pp. 369–386, 2019. doi: 10.1093/biomet/asz002.

[26] M. Shen, Y. Liu, and M. Xie, “Robust resampling methods for outlier-prone data,” Computational Statistics & Data Analysis, vol. 169, p. 107 418, 2022. doi: 10.1016/j.csda.2022.107418.

[27] B. Efron, Computer Age Statistical Inference: Algorithms, Evidence, and Data Science, 2nd. Cambridge: Cambridge University Press, 2021.

[28] J. G. MacKinnon, M. Ø. Nielsen, and M. D. Webb, “Fast and reliable jackknife and bootstrap methods for cluster-robust inference,” Journal of Applied Econometrics, vol. 38, no. 5, pp. 671–694, 2023.

[29] A. D. Burhanuddin, B. Yanuwiadi, and E. Arisoesilaningsih, “Evaluating performance and sustainability of the waste bank in some cities in east java, indonesia,” Jurnal Pembangunan dan Alam Lestari (JPAL), vol. 15, no. 2, pp. 65–78, 2024.

[30] F. Fatmawati, I. Ilham, S. Saleh, and A. R. Razak, “Waste management system: A case study of waste bank management toward a circular economy in maros regency,” Jurnal Borneo Administrator, vol. 20, no. 1, pp. 1–14, 2024.




DOI: https://doi.org/10.18860/cauchy.v10i2.37218

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Kamelia Hidayat, Adji Achmad Rinaldo Fernandes, Atiek Iriany, Solimun Solimun, Moh. Zhafran Hidayatulloh, Fachira Haneinanda Junianto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.