Implementation of DBSCAN and K-MEANS++ Methods for Flood Vulnerability Cluster Mapping in East Java Province, 2024

A'yunin Sofro, Zalfa Zaliana Nugrahanto

Abstract


Flood disasters remain one of the most frequent natural hazards in Indonesia, particularly in East Java Province, where variations in rainfall, population density, and land use contribute to differing levels of flood vulnerability. Although numerous studies have explored flood susceptibility using geospatial and statistical models, comparative analyses of clustering algorithms specifically designed for complex regional topographies remain limited. This study aims to implement and compare two clustering algorithms Density Based Spatial Clustering of Applications with Noise (DBSCAN) and K-Means++ to map flood vulnerability patterns across the region. The urgency of this study lies in the province’s increasing flood frequency and its impact on infrastructure and livelihoods, which demand an adaptive and data driven spatial analysis approach. DBSCAN was selected for its ability to detect irregular, non-linear cluster shapes, while K-Means++ offers efficiency and stability through improved centroid initialization. The dataset includes hydrometeorological and socio-environmental indicators such as rainfall, elevation, slope, land cover, and population density. Clustering performance was assessed using the Silhouette Index (SI) and Davies Bouldin Index (DBI). Results showed that DBSCAN achieved a higher SI (0.3266) compared to K-Means++ (0.2453), indicating better cohesion and separation. Spatially, DBSCAN generated four distinct clusters corresponding to actual flood prone areas, particularly in Jember, Lumajang, Pasuruan, and Sidoarjo. These findings suggest that density-based clustering provides a more reliable representation of heterogeneous spatial flood patterns, supporting local governments in targeted mitigation planning and regional disaster risk management.

Keywords


statistics; mathematics

Full Text:

PDF

References


Z. Yuan et al., “Dynamic evolution and scenario-based prediction of urban flood resilience: A system dynamics modeling approach in Kunming, China,” Journal of Environmental Management, vol. 395, p. 127740, 2025, doi: 10.1016/j.jenvman.2025.127740.

M. F. Ghifari, K. Rusba, and M. Ramdan, “Kebijakan penanggulangan bencana banjir dan kebakaran di Kota Balikpapan,” Identifikasi, vol. 10, no. 1, pp. 156–160, 2024.

J. L. Duykers, K. Ardana, R. Yulistiani, E. Irwansyah, and D. Fitrianah, “Identifying factors for supporting early warning flood using clustering approach and geo-spatial analysis,” Procedia Computer Science, vol. 227, pp. 540–547, 2023, doi: 10.1016/j.procs.2023.10.556.

E. A. Okoli et al., “Integrated flood susceptibility mapping using machine learning and geospatial techniques: A case study of Imo State, Southeastern Nigeria,” Journal of African Earth Sciences, vol. 233, p. 105872, 2026, doi: 10.1016/j.jafrearsci.2025.105872.

H. Xu, C. Ma, J. Lian, K. Xu, and E. Chaima, “Urban flooding risk assessment based on an integrated K-Means cluster algorithm and improved entropy weight method in the region of Haikou, China,” Journal of Hydrology, vol. 563, pp. 975–986, 2018, doi: 10.1016/j.jhydrol.2018.06.060.

A. A. Abdulnassar and L. R. Nair, “Performance analysis of K-Means with modified initial centroid selection algorithms and developed K-Means9+ model,” Measurement: Sensors, vol. 25, p. 100666, 2023, doi: 10.1016/j.measen.2023.100666.

S. K. Majhi and S. Biswal, “Optimal cluster analysis using hybrid K-Means and ant lion optimizer,” Karbala International Journal of Modern Science, vol. 4, no. 4, pp. 347–360, 2018, doi: 10.1016/j.kijoms.2018.09.001.

Y. Tu, Z. Tang, and B. Lev, “Regional flood risk grading assessment considering indicator interactions among hazard, exposure, and vulnerability: A novel FlowSort with DBSCAN,” Journal of Hydrology, vol. 639, p. 131587, 2024, doi: 10.1016/j.jhydrol.2024.131587.

A. M. Jibrin, M. Al-Suwaiyan, Z. M. Yaseen, and S. I. Abba, “New perspective on density-based spatial clustering of applications with noise for groundwater assessment,” Journal of Hydrology, vol. 661, p. 133566, 2025, doi: 10.1016/j.jhydrol.2025.133566.

O. Kulkarni and A. Burhanpurwala, “A survey of advancements in DBSCAN clustering algorithms for big data,” in 2024 3rd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC), IEEE, 2024, pp. 106–111, doi: 10.1109/PARC59193.2024.10486339.

F. M. Martínez-García, A. Molina García, F. C. Gómez de León, and M. Alarcón, “Distillation anomaly and fault detection based on clustering algorithms,” Journal of Industrial Information Integration, vol. 48, p. 100970, 2025, doi: 10.1016/j.jii.2025.100970.

S. Srinath and N. Baydeti, “Behavioral pattern clustering for thematic user segmentation in web interaction environments,” Information Sciences, vol. 724, p. 122745, 2026, doi: 10.1016/j.ins.2025.122745.

B. E. Cahyono, E. Purwandari, Misto, N. Febrianti, and Y. Pramono, “Mapping flooded risk area in East Java, Indonesia using remote sensing data,” Journal of Physics: Conference Series, vol. 1825, p. 012081, 2021, doi: 10.1088/1742-6596/1825/1/012081.

Y. S. Iswandaru, A. Widodo, and M. S. Purwanto, “Analysis of flood disaster areas, Jombang Regency, East Java using ArcGIS remote sensing,” Journal of Marine-Earth Science and Technology, vol. 2, no. 3, pp. 78–82, 2021, doi: 10.12962/j27745449.v2i3.100.

P. P. Allorerung, A. Erna, M. Bagussahrir, and S. Alam, “Analisis performa normalisasi data untuk klasifikasi k-nearest neighbor pada dataset penyakit,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 9, no. 3, pp. 178–191, 2024, doi: 10.14421/jiska.2024.9.3.178-191.

I.-K. Hong et al., “Investigating standardized criteria to evaluate the impact of agro-healing programs on psychological and interpersonal outcomes: Utilizing normalization methods,” Acta Psychologica, vol. 261, p. 105727, 2025, doi: 10.1016/j.actpsy.2025.105727.

F. Gani, H. S. Panigoro, S. L. Mahmud, E. Rahmi, S. K. Nasib, and L. O. Nashar, “Implementation of k-nearest neighbor algorithm on density-based spatial clustering application with noise method on stunting clustering,” Jurnal Diferensial, vol. 6, no. 2, pp. 170–178, 2024, doi: 10.35508/jd.v6i2.16278.

J. Qian, Y. Zhou, X. Han, and Y. Wang, “MDBSCAN: A multi-density DBSCAN based on relative density,” Neurocomputing, vol. 576, p. 127329, 2024, doi: 10.1016/j.neucom.2024.127329.

Y. Liu, X. Li, C. Sun, Q. Dong, Q. Yin, and B. Yan, “An indoor thermal comfort model for group thermal comfort prediction based on k-means++ algorithm,” Energy and Buildings, vol. 327, p. 115000, 2025, doi: 10.1016/j.enbuild.2024.115000.

P. Sarah, S. Krishnapriya, S. Saladi, Y. Karuna, and D. P. Bavirisetti, “A novel approach to brain tumor detection using k-means++, SGLDM, ResNet50, and synthetic data augmentation,” Frontiers in Physiology, vol. 15, p. 1342572, 2024, doi: 10.3389/fphys.2024.1342572.

A. Putra, D. Abdullah, and M. Daud, “Klasterisasi kualitas biji kopi berdasarkan taraf penyusutan menggunakan metode k-harmonic means dengan validasi silhouette index dan c-index,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 4, no. 2, pp. 74–86, 2024, doi: 10.59395/f1jg3b72.




DOI: https://doi.org/10.18860/cauchy.v11i1.37410

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 A'yunin Sofro

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.