Spatial Variation of HDI in East Java: A Tricube-Based Geographically Weighted Regression–Flower Pollination Algorithm Modeling Approach

Friansyah Gani, Henny Pramoedyo, Henny Pramoedyo, Achmad Efendi

Abstract


Understanding spatial disparities in human development is essential for designing equitable development policies. This study examines the spatial variation of the Human Development Index (HDI) in East Java Province using an integrated Geographically Weighted Regression–Flower Pollination Algorithm (GWR--FPA) optimized with a Tricube kernel. The integration of GWR and FPA enables simultaneous spatial weighting and metaheuristic-based bandwidth optimization. Three predictors were analyzed: population size ($X_1$), literacy rate ($X_2$), and mean years of schooling ($X_3$). Statistical diagnostics indicated significant spatial autocorrelation and heteroskedasticity in the OLS residuals, justifying the use of a spatial modeling framework. The GWR estimates revealed strong spatial non-stationarity: $X_1$ showed no significant local effect, whereas educational factors ($X_2$ and $X_3$) were significant in all 38 districts and cities. The FPA optimization enhanced bandwidth selection, resulting in improved model fit. Model comparison based on AIC and AICc showed that the GWR--FPA--Tricube model achieved the lowest values (AIC = 135.8821; AICc = 137.0045), outperforming both global OLS and standard GWR. These findings demonstrate that education-related variables are the primary drivers of HDI variation in East Java, while demographic size contributes minimally. The optimized model provides a more accurate spatial representation of local development disparities, supporting targeted policy interventions and illustrating the effectiveness of integrating metaheuristic optimization within spatial regression.

Keywords


GWR, FPA, GWR-FPA, GWR-FPA-Tricube, HDI.

Full Text:

PDF

References


[1] A. Cohen-Solal, W. Alemayehu, C. S. Lam, H. Tsutsui, J. Zhang, A. Godoy-Palomino, D. N. Tziakas, S. Corda, C. J. McMullan, J. A. Ezekowitz, A. F. Hernandez, B. Pieske, C. M. O’Connor, C. M. Westerhout, and P. W. Armstrong, “Geographic variation and human development index in heart failure with reduced ejection fraction: Insights from victoria,” JACC: Heart Failure, vol. 13, no. 9, p. 102548, 2025. doi: 10.1016/j.jchf.2025.102548. Available online.

[2] A. Al-Maadid, M. S. Ben Ali, and K. Si Mohammed, “The effect of climate risk on the human development index using the panel time-varying interactive fixed effects,” Environmental and Sustainability Indicators, vol. 27, p. 100757, 2025. doi: 10.1016/j.indic.2025.100757. Available online.

[3] F. Jiang, “Comment on ‘Favorable breast cancer mortality-to-incidence ratios of countries with good human development index rankings and high health expenditures’,” Taiwanese Journal of Obstetrics and Gynecology, vol. 64, no. 6, p. 1130, 2025. doi: 10.1016/j.tjog.2025.07.027. Available online.

[4] B. Zulfiqar, L. Madureira, S. Abbas, F. Shahzad, and Z. Fareed, “Asymmetric impact of human development index on terrorism in Pakistan: New findings from QARDL,” Socio-Economic Planning Sciences, vol. 100, p. 102226, 2025. doi: 10.1016/j.seps.2025.102226. Available online.

[5] J. Casellas, P. Salgado-López, J. Lorente, I. Solar Diaz, T. Rathje, J. Gasa, and D. Solà-Oriol, “Classification of light Yorkshire pigs at different production stages using ordinary least squares and machine learning methods,” Animal, vol. 18, no. 1, p. 101047, 2024. doi: 10.1016/j.animal.2023.101047. Available online.

[6] K. Tong, “Urbanization moderates the transitional linkages between energy resource use, greenhouse gas emissions, socio-economic and human development: Insights from subnational analyses in China,” Journal of Cleaner Production, vol. 476, p. 143776, 2024. doi: 10.1016/j.jclepro.2024.143776. Available online.

[7] T. Goswami and S. Ghosal, “Domestic water poverty in a semi-arid district of eastern India: Multiple dimensions, regional pattern, and association with human development,” Environmental Development, vol. 44, p. 100742, 2022. doi: 10.1016/j.envdev.2022.100742. Available online.

[8] M. d. R. Ahumada, D. Denegri, G. Caffe, M. V. Hick, J. M. Paz, S. Aguilar, C. Celis Pirard, and C. Motta, “Spatial analysis of Fasciola hepatica prevalence in sheep flocks from Córdoba, Argentina using GWR and IDW models,” Veterinary Parasitology: Regional Studies and Reports, vol. 66, p. 101367, 2025. doi: 10.1016/j.vprsr.2025.101367. Available online.

[9] S. Mondal, K. K. Gavsker, and B. Mandal, “Decoding spatial non-stationarity of urban heat island in a million-plus Indian city: An integrated analysis harnessing GWR, MGWR, and Geodetector models for urban climate resilience,” Advances in Space Research, 2025. doi: 10.1016/j.asr.2025.10.012. Available online.

[10] S. W. Tyas, Gunardi, and L. A. Puspitasari, “Geographically weighted generalized Poisson regression model with the best kernel function in the case of postpartum maternal mortality in East Java,” MethodsX, vol. 10, p. 102002, 2023. doi: 10.1016/j.mex.2023.102002. Available online.

[11] R. Putra, M. G. Fadhlurrahman, and Gunardi, “Determination of the best knot and bandwidth in geographically weighted truncated spline nonparametric regression using generalized cross validation,” MethodsX, vol. 10, p. 101994, 2023. doi: 10.1016/j.mex.2022.101994. Available online.

[12] M. Chu and W. Chen, “A bi-objective discrete flower pollination algorithm for planning the collaborative disassembly of retired power batteries by humans and robots,” Applied Soft Computing, vol. 177, p. 113213, 2025. doi: 10.1016/j.asoc.2025.113213. Available online.

[13] Y. Hu, L. Qin, S. Li, X. Li, Y. Li, and W. Sheng, “Optimal chiller loading based on flower pollination algorithm for energy saving,” Journal of Building Engineering, vol. 93, p. 109884, 2024. doi: 10.1016/j.jobe.2024.109884. Available online.

[14] R. Neog and B. Ghasemzadeh, “Drivers and dynamics of urban sprawl in Dimapur, India (1994–2024): A Gini, UEII, and geographically weighted regression-based assessment,” Advances in Space Research, 2025. doi: 10.1016/j.asr.2025.11.091. Available online.

[15] D. Zhang and Y. Zhang, “Moran’s I of VRPAD: A human activity-sensitive spatial pattern index for vegetation restoration evaluation,” Journal of Environmental Management, vol. 387, p. 125948, 2025. doi: 10.1016/j.jenvman.2025.125948. Available online.

[16] B. Güloğlu, S. Taşpınar, O. Doğan, and A. K. Bera, “Testing homoskedasticity in spatial panel data models,” Econometrics and Statistics, 2024. doi: 10.1016/j.ecosta.2024.04.003. Available online.

[17] F. Gani, H. Pramoedyo, and A. Efendi, “Modeling fuzzy geographically weighted clustering with flower pollination algorithm for spatial optimization and clustering,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 10, no. 2, pp. 1205–1218, 2025. doi: 10.18860/cauchy.v10i2.36800. Available online.

[18] N. Chauhan, N. Kaur, K. S. Saini, S. Verma, R. Abu Khurma, and P. A. Castillo, “Maximizing resource efficiency in cloud data centers through knowledge-based flower pollination algorithm (KB-FPA),” Computers, Materials and Continua, vol. 79, no. 3, pp. 3757–3782, 2024. doi: 10.32604/cmc.2024.046516. Available online.

[19] M. Abdel-Basset and L. A. Shawky, “Flower pollination algorithm: A comprehensive review,” Artificial Intelligence Review, vol. 52, no. 4, pp. 2533–2557, 2019. doi: 10.1007/s10462-018-9624-4.

[20] Z. Huisheng, A. A. Alasgah, I. Ahmad, M. A. Dar, M. Zelenakova, M. Sisay, G. S. Zewdu, and Y. M. Youssef, “Exploring groundwater potential: Combining GIS techniques with OLS, GWR, and exploratory regression,” Journal of Hydrology: Regional Studies, vol. 61, p. 102564, 2025. doi: 10.1016/j.ejrh.2025.102564. Available online.

[21] B. Mandal and K. P. Goswami, “Evaluating the influence of biophysical factors in explaining spatial heterogeneity of LST: Insights from Brahmani-Dwarka interfluve leveraging Geodetector, GWR, and MGWR models,” Physics and Chemistry of the Earth, vol. 138, p. 103836, 2025. doi: 10.1016/j.pce.2024.103836. Available online.

[22] S. Ali, J. Ran, Y. Luan, B. Khorrami, Y. Xiao, and N. Tangdamrongsub, “The GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater storage to investigate local-scale variations in the North China Plain,” Science of The Total Environment, vol. 908, p. 168239, 2024. doi: 10.1016/j.scitotenv.2023.168239. Available online.

[23] G. Flood-Page, L. Boutonnier, and J.-M. Pereira, “Application of the Akaike information criterion to the interpretation of bender element tests,” Soil Dynamics and Earthquake Engineering, vol. 177, p. 108373, 2024. doi: 10.1016/j.soildyn.2023.108373. Available online.

[24] S. Kudo, M. Fujimoto, T. Sato, and A. Nagano, “Determination of the optimal number of linked rigid-bodies of the trunk during walking and running based on Akaike’s information criterion,” Gait & Posture, vol. 77, pp. 264–268, 2020. doi: 10.1016/j.gaitpost.2020.02.009. Available online.




DOI: https://doi.org/10.18860/cauchy.v11i1.38007

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Friansyah Gani, Henny Pramoedyo, Henny Pramoedyo, Achmad Efendi, Achmad Efendi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.