Transmission Dynamics of Dengue Disease Incorporating Treatment, Mass Awareness, and Wolbachia Intervention

Rafika Nanda Agustina, Budi Priyo Prawoto

Abstract


Dengue Hemorrhagic Fever (DHF) remains a serious global health threat, with transmission dynamics significantly influenced by vector control strategies and human behavior. This study constructs and analyzes a differential equation-based mathematical model to investigate dengue transmission dynamics by integrating three control strategies: medical treatment, mass awareness, and the release of Wolbachia-infected mosquitoes. The basic reproduction number (R0) is derived using the Next Generation Matrix (NGM) method as a threshold quantity for disease transmission. Simulation results demonstrate that when parameter values satisfy the condition R0 < 1, the system trajectories converge to the disease-free equilibrium, implying that the disease will be eliminated over time. Conversely, modifying parameters δ and p such that R0 > 1 results in system stability at the endemic equilibrium, indicating disease persistence within the population. This study concludes the importance of controlling these key parameters through integrated interventions to reduce the value of R0 to less than unity

Keywords


basic reproduction number; dengue hemorrhagic fever; mathematical model; stability analysis; Wolbachia

Full Text:

PDF

References


[1] H. Harapan, A. Michie, R. T. Sasmono, and A. Imrie, “Dengue: A minireview,” Viruses, vol. 12, no. 8, p. 829, Aug. 2020. doi: 10.3390/v12080829.

[2] World Health Organization. “Dengue and severe dengue.” Accessed: 2024. Available online.

[3] A. S. Anas et al., “Faktor Risiko Penyakit Demam Berdarah Dengue (Risk Factors for Dengue Fever): Artikel Review,” Jurnal Kolaboratif Sains, vol. 8, no. 6, pp. 3169–3176, 2025. doi: 10.56338/jks.v8i6.7913.

[4] M. Sobari, I. G. N. M. Jaya, and B. N. Ruchjana, “Spatial Analysis of Dengue Disease in Jakarta Province,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, no. 4,pp. 535–547, May 2023. doi: 10.18860/ca.v7i4.17423.

[5] R. Hutapea and I. Husein, “Model Koefisien Bervariasi Spasial Bayesian untuk Mem402 perkirakan Risiko Relatif Penyakit Demam Berdarah Dengue di Kota Medan,” Jurnal Matematika Juli, vol. 5, 2025. Available online.

[6] Kementerian Kesehatan RI, Profil Kesehatan Indonesia 2024, Kementerian Kesehatan Republik Indonesia, 2024. Available online.

[7] A. A. Hershan, “Dengue Virus: Molecular Biology and Recent Developments in Control Strategies, Prevention, Management, and Therapeutics,” Journal of Pharmacy and Bioallied Sciences, Jun. 2023. doi: 10.1177/0976500X231204401.

[8] M. P. Kala, A. L. St. John, and A. P. S. Rathore, “Dengue: Update on Clinically Relevant Therapeutic Strategies and Vaccines,” Current Treatment Options in Infectious Diseases, vol. 15, no. 2, pp. 27–52, Apr. 2023. doi: 10.1007/s40506-023-00263-w.

[9] M. Narendran, S. Chate, and R. Patil, “Community-based intervention to dengue prevention: Insights from urban residents in Pune, using the health belief model,” Clinical Epidemiology and Global Health, vol. 30, Nov. 2024. doi: 10.1016/j.cegh.2024.101779.

[10] C. A. Djuma, N. Achmad, A. R. Nuha, I. K. Hasan, and A. Arsal, “Model Matematika Penyebaran Penyakit Demam Berdarah Dengue dengan Faktor Kesadaran Sosial: Analisis dan Simulasi,” Jambura Journal of Mathematics, vol. 7, no. 2, Aug. 2025. doi: 10.37905/jjom.v7i2.33921.

[11] A. Ahamed, S. Ali, and M. Hoque, “Wolbachia-Based biocontrol of Aedes aegypti: Current Progress, Challenges, and future prospects,” Journal of Invertebrate Pathology, p. 108 468, Feb. 2025. doi: 10.1016/j.jip.2025.108468

[12] K. L. Anders et al., “Reduced dengue incidence following deployments of Wolbachia423 infected Aedes aegypti in Yogyakarta, Indonesia: A quasi-experimental trial using controlled interrupted time series analysis,” Gates Open Research, vol. 4, 2020. doi: 10.12688/gatesopenres.13122.1.

[13] A. Utarini, C. Indriani, R. A. Ahmad, et al., “Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue,” New England Journal of Medicine, vol. 384, no. 23, pp. 2177–2186, Jun. 2021. doi: 10.1056/nejmoa2030243.

[14] A. Sa’adah and D. K. Sari, “Mathematical Models of Dengue Transmission Dynamics with Vaccination and Wolbachia Parameters and Seasonal Aspects,” Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 4, pp. 2305–2316, Dec. 2023. doi: 10.30598/barekengvol17iss4pp2305-2316.

[15] M. Z. Ndii, N. Anggriani, B. S. Djahi, S. T. Tresna, and F. Inayaturohmat, “Numerical simulations of a two-strain dengue model to investigate the efficacy of the deployment of Wolbachia-carrying mosquitoes and vaccination for reducing the incidence of dengue infections,” Journal of Biosafety and Biosecurity, vol. 6, no. 4, pp. 244–251, Dec. 2024. doi:10.1016/j.jobb.2024.08.003.

[16] H. Zhang and R. Lui, “Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study,” Infectious Disease Modelling, vol. 5, pp. 142–160, Jan. 2020. doi: 10.1016/j.idm.2019.12.004.

[17] S. Safaei, M. Derakhshan-sefidi, and A. Karimi, “Wolbachia: A bacterial weapon against dengue fever- a narrative review of risk factors for dengue fever outbreaks,” New Microbes and New Infections, Jun. 2025. doi: 10.1016/j.nmni.2025.101578.

[18] B. Z. Naaly, T. Marijani, A. Isdory, and J. Z. Ndendya, “Mathematical modeling of the effects of vector control, treatment and mass awareness on the transmission dynamics of dengue fever,” Computer Methods and Programs in Biomedicine Update, vol. 6, Jan. 2024. doi: 10.1016/j.cmpbup.2024.100159.

[19] W. H. Cahyati, N. Siyam, and E. Nugroho, “Distribution of Voltage-gated Sodium Channel Mutations in Aedes Aegypti Populations from Rural Areas of Indonesia,” The Open Public Health Journal, vol. 16, no. 1, Jan. 2024. doi: 10.2174/0118749445255879231003110635.

[20] A. H. A. Faruqy and B. P. Prawoto, “Bilangan reproduksi dasar model penyebaran penyakit demam berdarah dengue dengan adanya penyebaran bakteri wolbachia,” MATHunesa: Jurnal Ilmiah Matematika, vol. 12, no. 02, pp. 284–291, 2024. Available online.

[21] D. Medhi, G. Sarma, and A. Shyam, “Stability analysis of linear systems using the routh-hurwitz criterion: Theory and applications,” Journal of Computational Analysis and Aplication, vol. 33, no. 8, pp. 903–907, 2024.

[22] F. D. Frentiu et al., “Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia,” PLoS Neglected Tropical Diseases, vol. 8, no. 2, 2014. doi: 10.1371/journal.pntd.0002688.

[23] W. Tantowijoyo et al., “Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia,” PLoS Neglected Tropical Diseases, vol. 14, no. 4, pp. 1–13, Apr. 2020. doi: 10.1371/journal.pntd.0008157.

[24] N. Nurkhanifah, A. Suryanto, and I. Darti, “Dynamics of Lumpy Skin Disease Model with Vaccination and Environmental Transmission,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 10, no. 1, pp. 133–146, 2025. doi: 10.18860/ca.v10i1.29969.

[25] R. Resmawan and L. Yahya, “Sensitivity Analysis of Mathematical Model of Coronavirus Disease (COVID-19) Transmission,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 6, no. 2, pp. 91–99, May 2020. doi: 10.18860/ca.v6i2.9165.




DOI: https://doi.org/10.18860/cauchy.v11i1.39026

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Budi Priyo Prawoto, Rafika Nanda Agustina

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.