Dynamic Analysis of a Predator–Prey Model with Group Defense in Prey and Cooperative Hunting in Predators

Nabilah Meladelvia, Dian Savitri

Abstract


This article discusses a single-prey and single-predator model by incorporating two behavioral mechanisms, namely group defense in prey modeled through a Holling type IV response function and cooperative hunting in predators represented by a predation rate dependent on predator density. Through system analysis, three critical points were obtained, namely the total extinction point, the predator extinction point, and the interior point that describes the coexistence of both species. The total extinction point is always unstable, while the other two critical points are conditionally stable depending on the predator attack rate parameter. Numerical simulations in the form of phase portraits were obtained by varying the parameters related to the predator attack rate. The simulation results show double stability (bistability) when α = 3, where the system can lead to predator extinction or stable coexistence depending on the initial population conditions. Furthermore, numerical continuation was performed to track changes in equilibrium point stability. The results show a Hopf bifurcation at α = 0.4595, marked by a change in the stability of the interior point, a limit point bifurcation (saddle-node) at α = 0.0478 due to the merging of two interior equilibrium points, and a transcritical bifurcation at α = 3.0505, which shows an exchange of stability between equilibrium points.


Keywords


Cooperative_Hunting; Group_Defense; stability; bifurcation, transcritical, bistability

Full Text:

PDF

References


[1] S. Sumarto and R. Koneri, Ekologi Hewan. 2016.

[2] D. Kikuchi et al., “The evolution and ecology of multiple antipredator defences,” Journal of Evolutionary Biology, vol. 36, no. 7, pp. 975–991, 2023. doi: 10.1111/jeb.14192

[3] J. Johnson and M. Belk, “Predators as agents of selection and diversification,” Diversity,vol. 12, no. 11, p. 415, 2020. doi: 10.3390/d12110415

[4] S. Pal, N. Pal, S. Samanta, and J. Chattopadhyay, “Effect of hunting cooperation and fear in a predator-prey model,” Ecological Complexity, vol. 39, p. 100 770, 2019. doi: 10.1016/j.ecocom.2019.100770

[5] S. Loarie, C. Tambling, and G. Asner, “Lion hunting behaviour and vegetation structure in an african savanna,” Animal Behaviour, vol. 85, no. 5, pp. 899–906, 2013. doi: 10.1016 360 /j.anbehav.2013.01.018

[6] S. Yiu, N. Owen-Smith, and J. Cain, “How lions move at night when they hunt?” Journal of Mammalogy, vol. 103, no. 4, pp. 855–864, 2022. doi: 10.1093/jmammal/gyac025

[7] N. Courbin et al., “Zebra diel migrations reduce encounter risk with lions at night,” Journal of Animal Ecology, vol. 88, no. 1, pp. 92–101, 2019. doi: 10.1111/1365-2656.12910

[8] Resmawan, A. Suryanto, I. Darti, and P. H., “Dynamical analysis of a predator-prey model with additif allee effect and prey group defense,” vol. 12, no. 11, p. 415, 2024. doi: 10.31219/osf.io/9ufkn

[9] R. Pratama, M. Loupatty, W. Hariyanto H.and Caesarendra, and W. Rahmaniar, “Fear and group defense effect of a holling type iv predator-prey system intraspecific competition,”Emerging Science Journal, vol. 7, no. 2, pp. 385–395, 2023. doi: 10.28991/ESJ-2023-07-02-06

[10] H. Chen, M. Liu, and X. Xu, “Dynamics of a prey–predator model with group defense for prey, cooperative hunting for predator, and lévy jump,” Axioms, vol. 12, no. 9, p. 878, 2023. doi: 10.3390/axioms12090878

[11] S. Salwa, L. Shakira, and D. Savitri, “Dinamika model mangsa-pemangsa lotka volterra dengan adanya kerja sama berburu pada pemangsa,” Jurnal Riset dan Aplikasi Matematika (JRAM), vol. 7, no. 2, pp. 195–205, 2023.

[12] D. Bai and J. Tang, “Global dynamics of a predator–prey system with cooperative hunting,” Applied Sciences, vol. 13, no. 14, p. 8178, 2023. doi: 10.3390/app13148178

[13] Y. Du, B. Niu, and W. J., “A predator-prey model with cooperative hunting in the predator and group defense in the prey,” Discrete and Continuous Dynamical Systems-Series B, vol. 27, no. 10, 2022. doi: 10.3934/dcdsb.2021298

[14] M. Alves and F. Hilker, “Hunting cooperation and allee effects in predators,” Journal of theoretical biology, vol. 419, pp. 13–22, 2017. doi: 10.1016/j.jtbi.2017.02.002

[15] K. Tsutsui, R. Tanaka, K. Takeda, and K. Fujii, “Collaborative hunting in artificial agents with deep reinforcement learning,” Elife, vol. 13, e85694, 2024. doi: 10.7554/eLife.85694

[16] Y. Xu, J. Zhao, and X. Wei, “Spatiotemporal dynamics in a delayed diffusive predator-prey model with cooperative hunting and group defense,” Advances in Continuous and Discrete Models, vol. 2025, no. 1, p. 113, 2025. doi: 10.1186/s13662-025-03971-3

[17] M. Chen and W. Yang, “Role of cooperative hunting among predators and predator dependent prey refuge behavior in a predator-prey model,” Journal of Nonlinear Modeling and Analysis, vol. 7, no. 1, pp. 209–228, 2025. doi: 10.12150/jnma.2025.209

[18] M. Singh, A. Sharma, and L. Sánchez-Ruiz, “Impact of the allee effect on the dynamics of a predator-prey model exhibiting group defense,” Mathematics, vol. 13, no. 4, p. 633, 2025.doi: 10.3390/math13040633

[19] H. Zhang, “Dynamics behavior of a predator-prey diffusion model incorporating hunting cooperation and predator-taxis,” Mathematics, vol. 12, no. 10, p. 1474, 2024. doi: 10.3390/math12101474

[20] Y. Zhang, L. Chen, F. Chen, and Z. Li, “Interplay between preys’ anti-predator behavior and predators’ cooperative hunting: A mathematical approach,” Chaos, Solitons & Fractals, vol. 199, p. 116 624, 2025. doi: 10.1016/j.chaos.2025.116624

[21] I. Benamara and A. El Abdllaoui, “Bifurcation in a delayed predator–prey model with holling type iv functional response incorporating hunting cooperation and fear effect,” International Journal of Dynamics and Control, vol. 11, no. 6, pp. 2733–2750, 2023. doi:10.1007/s40435-023-01123-7

[22] D. Fitri and D. Savitri, “Prey predator model with holling type ii functional response and hunting cooperation of predators,” MATHunesa: Jurnal Ilmiah Matematika, vol. 12, no. 3,pp. 637–645, 2024.

[23] A. Salsabila and D. Savitri, “Dynamical analysis of holling tanner prey predators model with add food in second level predators,” Jambura Journal of Biomathematics (JJBM), vol. 5, no. 2, pp. 63–70, 2024. doi: 10.37905/jjbm.v5i2.25753

[24] Z. 412 Ju, Y. Shao, X. Xie, X. Ma, and X. Fang, “The dynamics of an impulsive predator-prey system with stage structure and holling type iii functional response,” Journal of Animal Ecology, vol. 2015, no. 1, 2015. doi: 10.1155/2015/183526

[25] A. Mufidah and D. Savitri, “Analisis kestabilan model mangsa pemangsa dengan makanan tambahan pada pemangsa menggunakan fungsi respon holling tipe iv,” Jurnal Riset dan Aplikasi Matematika (JRAM), vol. 7, no. 1, pp. 80–94, 2023.

[26] D. Das, D. Banerjee, and J. Bhattacharjee, “Super-critical and sub-critical hopf bifurcations in two and three dimensions,” Nonlinear Dynamics, vol. 77, no. 1, pp. 169–184, 2014. doi:10.1007/s11071-014-1282-8

[27] D. Savitri and H. Panigoro, “Bifurkasi hopf pada model prey-predator-super predator dengan fungsi respon yang berbeda,” Jambura Journal of Biomathematics (JJBM), vol. 1,no. 2, pp. 65–70, 2020. doi: 10.34312/jjbm.v1i2.8399




DOI: https://doi.org/10.18860/cauchy.v11i1.40210

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Dian Savitri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.