Matrix Approach To The Direct Computation Method For The Solution of Fredholm Integro-Differential Equations of The Second Kind With Degenerate Kernels
Abstract
Keywords
Full Text:
PDFReferences
Abdul-Majid Wazwaz (2011): Linear and Nonlinear Integral Equations Methods and Applications. Higher Education Press, Beijing.
Pandey, P. K. (2015): Numerical Solution of Linear Fredholm Integro-Differential Equations by Non-standard Finite Difference Method, Applications and Applied Mathematics, An International Journal (AAM): (10)2, pp.1019-1026
Kamoh, N. M. and Kumleng, G. M. (2018): Developing a Finite Difference Hybrid Method for Solving Second Order Initial-Value Problems for the Volterra Type Integro-Differential Equations. Songklanakarin Journal of Science and Technology SJST-2018-0171.R1
Kamoh, N. M., Aboiyar, T. and Kimbir, A. R. (2017) Continuous Multistep Methods for Volterra Integro-Differential Equations of the Second Order, Science World Journal 12(3): pp.11-14
Kamoh, N. M. and Aboiyar, T. (2018) "Continuous linear multistep method for the general solution of first order initial value problems for Volterra integro-differential equations", Multidiscipline Modeling in Materials and Structures, Vol. 14 Issue: 5, pp.960-969, https://doi.org/10.1108/MMMS-12-2017-0149
D. C. Sharma and M. C. Goyal (2017): Integral Equations, PHI Private Learning Material Ltd, Delhi 110092.
Behrouz Raftari (2010): Numerical Solutions of the Linear Volterra Integro-differential Equations: Homotopy Perturbation Method and Finite Difference Method, World Applied Sciences Journal (9): pp. 7-12
Matinfar, M. and Riahifar, A. (2015): Numerical solution of Fredholm integral-differential equations on unbounded domain, Journal of Linear and Topological Algebra, 04(01):pp. 43- 52
Vahidi, A. R., Babolian, E., Cordshooli, Gh. A. and Azimzadeh, Z. (2009): Numerical Solution of Fredholm Integro-Differential Equation by Adomian’s Decomposition Method. International Journal of Mathematics Analysis, 3(36): pp.1769 – 1773
Saadatmandia, A. and Dehghan, B, (): Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. Computers and Mathematics with Applications (59): pp.2996-3004
Nas, S., Yalcinbas, S. and Sezer, M. (2000): A Taylor polynomial approach for solving high order linear Fredholm integro-differential equations, International Journal of Mathematics Education Science Technology 31 (2): pp.213-225.
Sezer, M. and Gulsu, M. (2007): Polynomial solution of the most general linear Fredholm-Volterra integro differential-difference equations by means of Taylor collocation method, Applied Mathematics and Computation, (185): pp. 646-657.
Sezer, M. and Gulsu, M. (2005): A new polynomial approach for solving difference and Fredholm integro-difference equations with mixed argument, Applied Mathematics and Computation (171): pp.332-344.
Behiry, S. H. and Hashish, H. (2002): Wavelet methods for the numerical solution of Fredholm integro-differential equations, International Journal of Applied Mathematics 11 (1): pp. 27-35.
Wazwaz, A.M. (2001): A reliable algorithm for solving boundary value problems for higher-order integro-differential equations, Applied Mathematics and Computation (118): pp.327-342.
Hosseini, S.M. and Shahmorad, S. (2003): Numerical solution of a class of Integro-Differential equations by the Tau Method with error estimation. Applied Mathematics and Computation (136):pp. 559–570
DOI: https://doi.org/10.18860/ca.v6i3.8960
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Nathaniel Mahwash Kamoh, Geoffrey Kumlengand, Joshua Sunday
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.