The Role Of Artificial Intelligence In Analyzing And Interpreting Arabic Texts: Study On The Challenge Of Literal Versus Contextual Meaning/ دور الذكاء الاصطناعي في تحليل النصوص العربية وتفسيرها :دراسة في إشكالية الحمل على اللفظ والمعنى
Abstract
Keywords
Full Text:
PDFReferences
Al-Qur'an. (n.d.). Al-Jahiz, A. (1965). Al-Hayawan (Vol. 1). Mustafa al-Babi al-Halabi. Al-Jurjani, A. (n.d.). Dalā'il al-I'jāz, (2009). Al khanji. Al-Khuzami, M. A. (2023). Dawr al-‘Aql al-Istina‘ī fī al-‘Ulūm al-Ijtimā‘īyah wa al-Insāniyah. Seminar Journal, 1(2), 3. Al-Raisi, A. (2017). Computational analysis of Qur'anic texts: Challenges and opportunities. Journal of Arabic and Islamic Studies, 17(2), 55–75. Al-Razgan, M. (2020). The role of computational linguistics in understanding the Arabic language. Journal of Language Processing, 34(2), 118-134. https://doi.org/10.1016/j.jlp.2020.01.004 Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations. Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. O'Reilly Media. Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 28(2), 15–21. Chowdhury, G. G. (2003). Natural language processing. Annual Review of Information Science and Technology, 37(1), 51-89. https://doi.org/10.1002/aris.1440370103. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 4171–4186). https://doi.org/10.18653/v1/N19-1423 Farghaly, A., & Shaalan, K. (2009). Arabic natural language processing: Challenges and solutions. ACM Transactions on Asian Language Information Processing, 8(4), 1–22. Farghaly, A., & Shaalan, K. (2009). Arabic natural language processing: Challenges and solutions. ACM Transactions on Asian Language Information Processing, 8(4), 1–22. Ghazali, A., & Al-Saleh, M. (2019). Understanding Arabic linguistic challenges in artificial intelligence applications. International Journal of Artificial Intelligence & Linguistics, 5(3), 101-110. https://doi.org/10.1111/jail.10123 Goldberg, Y. (2017). Neural network methods in natural language processing. Morgan & Claypool Publishers. Habash, N. (2010). Introduction to Arabic Natural Language Processing. Morgan & Claypool Publishers. Hamasah Abdul Latif, M. (2007). Al-Nahw wa al-Dalalah: Madkhal li-Dirasat al-Ma‘na al-Nahwi al-Dalali. Hassan, S., & Al-Khuri, L. (2017). Cultural sensitivity in natural language processing models. In Proceedings of the International Conference on Computational Linguistics (COLING 2017), 2737-2745. https://doi.org/10.18653/v1/C17-1289 Hussein, A. A. (2013). Al-ḥaml ʿalā al-maʿnā fī al-ʿArabiyya [The burden on meaning in Arabic] (pp. 13-14, 55). Dīwān al-Waqf al-Sunnī. Ibn Jinni, A. (n.d.). Al-Khāṣiṣ, (2008), Dar Alhadis. In Diwan of Imru' al-Qais (pp. 123-124). Publisher. Jurafsky, D., & Martin, J. H. (2020). Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition (3rd ed.). Prentice Hall. Karoo, K. (2018). Natural Language Processing and Digital Library Management System. International Journal of Science and Research (IJSR), Volume 7 Issue 11, November 2018 . Kumar, A., Tripathi, A., & Sharma, A. (2020). Cultural context in machine learning: Bridging the gap between technology and culture. Journal of Artificial Intelligence Research, 68, 533-550. https://doi.org/10.1613/jair.1.11829 Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (Vol. 30, pp. 4765-4774). https://doi.org/10.5555/3295222.3295230 Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. MIT Press. Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1-38. https://doi.org/10.1016/j.artint.2018.07.007 Naif, M. (1998). Khassā'īs al-‘Arabīyah wa ṭuruq tadwīsihā (5th ed.). Dār al-Nafā'is. p. 25. Nallapati, R., Zhou, B., Gulcehre, C., et al. (2016). Abstractive text summarization using sequence-to-sequence RNNs and beyond. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL 2016) (pp. 280–290). Qubi, A. (2024). Artificial intelligence and automatic Arabic language processing: A study of automatic speech recognition systems. Scientific Research Journal, 1(2), 1-xx. Moulay Ismail University, College of Multidisciplinary Studies, Errachidia. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAI. https://openai.com/research/ Radford, A., Wu, J., Child, R., et al. (2019). Language models are unsupervised multitask learners. OpenAI Blog. https://openai.com/research/language-unsupervised Ramadan, M. (2003). Min suwar al-ḥaml ʿala al-lafẓ wa al-maʿnā fī al-Qurʾān al-Karīm. Al-Farā’id fī al-Buḥūth al-Islāmīyah wa al-‘Arabīyah, 21(1). Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778 Saleh, A., & Bukhari, A. (2021). Challenges in semantic interpretation of figurative language in Arabic texts. Linguistics and Artificial Intelligence Journal, 42(2), 200-214. https://doi.org/10.1007/s10507-021-00585-9 Selim, M. (2023). Natural language processing in the light of neuro-linguistic programming: Challenges and solutions, with Arabic language as a model. Numeros Academic Journal, 4(1), 31-45. Shaheen, H. (2018). Arabic language processing in the age of artificial intelligence: Challenges and opportunities. AI and Society, 33(4), 617-629. https://doi.org/10.1007/s00146-018-0855-3 Timothy, P. (2022, August 24). Natural language processing at the forefront of Mohamed bin Zayed University of Artificial Intelligence's interests. Wired Middle East. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. A., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. NeurIPS, 30, 5998-6008. https://arxiv.org/abs/1706.03762 Xia, Y., Wang, H., & Zhang, J. (2019). Multi-context learning for cultural understanding in AI systems. AI & Society, 34(3), 517-529. https://doi.org/10.1007/s00146-018-0880-4
DOI: https://doi.org/10.18860/ijazarabi.v8i2.32171
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mustafa Kadad, Sadık Şehitoğlu
License URL: https://creativecommons.org/licenses/by-sa/4.0/