Utilization Of Online Quizizz For Arabic Language Learning

Melisa Rezi, Adam Mudinillah, Lusiana Rahmadani Putri, Muhammad Husni Shidqi


Students who experience problems when carrying out learning cannot come to school for a certain reason, cannot receive learning material and cannot carry out learning on that day. That is because the difficulties of students in understanding learning make students less understanding of the lesson, due to a lack of innovation in learning at school. This study aims to increase enthusiasm for learning Arabic by using the use of the Quizizz application. The method used by researchers is a quantitative method, this quantitative research can show data containing numbers that can be obtained by using Google from as a means to create a questionnaire that researchers can use as subjects of their research. Improving the learning quality of students in utilizing the use of Quizizz in learning Arabic is one of the results to be proud of. The conclusion from this study is that the quizizz application can increase students' enthusiasm for learning and can test students' abilities. The limitations of this study are that the researcher only conducted research at one institution, the researcher hopes that there will be similar research, but in different learning besides learning Arabic so that it can increase the reader's understanding of the issues that will be examined later. This study also recommends future research to make it a challenge in utilizing the use of Quizizz in learning Arabic.


Arabic Language; Platform Quizizz; Online Quiz

Full Text:



Asfar, A. M. I. T., & Asfar, A. M. I. A. (2020). Case-based games learning strategies to improve conceptual understanding in mathematics. Journal of Physics: Conference Series, 1663(1), 012060. https://doi.org/10.1088/1742-6596/1663/1/012060 Bacciu, D., Errica, F., Micheli, A., & Podda, M. (2020). A gentle introduction to deep learning for graphs. Neural Networks, 129, 203–221. https://doi.org/10.1016/j.neunet.2020.06.006 Barron, E., Bakhai, C., Kar, P., Weaver, A., Bradley, D., Ismail, H., Knighton, P., Holman, N., Khunti, K., Sattar, N., Wareham, N. J., Young, B., & Valabhji, J. (2020). Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. The Lancet Diabetes & Endocrinology, 8(10), 813–822. https://doi.org/10.1016/S2213-8587(20)30272-2 Bers, M. U., González-González, C., & Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130–145. https://doi.org/10.1016/j.compedu.2019.04.013 Brennan, C., Ashley, M., & Molloy, O. (2019). A System Dynamics Approach to Increasing Ocean Literacy. Frontiers in Marine Science, 6, 360. https://doi.org/10.3389/fmars.2019.00360 Burgarella, C., Barnaud, A., Kane, N. A., Jankowski, F., Scarcelli, N., Billot, C., Vigouroux, Y., & Berthouly-Salazar, C. (2019). Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation. Frontiers in Plant Science, 10, 4. https://doi.org/10.3389/fpls.2019.00004 Cameron, R. (2022). Computer Adaptive Practice for a Foundation Mathematics Course. International Journal of Emerging Technologies in Learning (IJET), 17(23), 28–37. https://doi.org/10.3991/ijet.v17i23.35917 Campbell, R., Goodman-Williams, R., & Javorka, M. (2019). A Trauma-Informed Approach to Sexual Violence Research Ethics and Open Science. Journal of Interpersonal Violence, 34(23–24), 4765–4793. https://doi.org/10.1177/0886260519871530 Chan, H. C. S., Shan, H., Dahoun, T., Vogel, H., & Yuan, S. (2019). Advancing Drug Discovery via Artificial Intelligence. Trends in Pharmacological Sciences, 40(8), 592–604. https://doi.org/10.1016/j.tips.2019.06.004 Cui, P., Wang, X., Pei, J., & Zhu, W. (2019). A Survey on Network Embedding. IEEE Transactions on Knowledge and Data Engineering, 31(5), 833–852. https://doi.org/10.1109/TKDE.2018.2849727 Cui, Y., Yao, H., Hong, L., Zhang, T., Xu, Y., Xian, K., Gao, B., Qin, J., Zhang, J., Wei, Z., & Hou, J. (2019). Achieving Over 15% Efficiency in Organic Photovoltaic Cells via Copolymer Design. Advanced Materials, 31(14), 1808356. https://doi.org/10.1002/adma.201808356 Donahue, N. D., Acar, H., & Wilhelm, S. (2019). Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 143, 68–96. https://doi.org/10.1016/j.addr.2019.04.008 Drgoňa, J., Arroyo, J., Cupeiro Figueroa, I., Blum, D., Arendt, K., Kim, D., Ollé, E. P., Oravec, J., Wetter, M., Vrabie, D. L., & Helsen, L. (2020). All you need to know about model predictive control for buildings. Annual Reviews in Control, 50, 190–232. https://doi.org/10.1016/j.arcontrol.2020.09.001 Dziuban, C., Graham, C. R., Moskal, P. D., Norberg, A., & Sicilia, N. (2018). Blended learning: The new normal and emerging technologies. International Journal of Educational Technology in Higher Education, 15(1), 3. https://doi.org/10.1186/s41239-017-0087-5 Fuse, Y., Takenouchi, H., & Tokumaru, M. (2019). A Robot Model That Obeys a Norm of a Human Group by Participating in the Group and Interacting with Its Members. IEICE Transactions on Information and Systems, E102.D(1), 185–194. https://doi.org/10.1587/transinf.2018EDP7077 Gaspar, J. D. S., Lage, E. M., Silva, F. J. D., Mineiro, É., Oliveira, I. J. R. D., Oliveira, I., Souza, R. G. D., Gusmão, J. R. O., De Souza, C. F. D., & Reis, Z. S. N. (2020). A Mobile Serious Game About the Pandemic (COVID-19—Did You Know?): Design and Evaluation Study. JMIR Serious Games, 8(4), e25226. https://doi.org/10.2196/25226 Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L., & Wagner, M. (2019). Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environmental Science & Technology, 53(3), 1039–1047. https://doi.org/10.1021/acs.est.8b05297 Kim, T.-H., Goyat, R., Rai, M. K., Kumar, G., Buchanan, W. J., Saha, R., & Thomas, R. (2019). A Novel Trust Evaluation Process for Secure Localization Using a Decentralized Blockchain in Wireless Sensor Networks. IEEE Access, 7, 184133–184144. https://doi.org/10.1109/ACCESS.2019.2960609 McKenzie, A. T., Wang, M., Hauberg, M. E., Fullard, J. F., Kozlenkov, A., Keenan, A., Hurd, Y. L., Dracheva, S., Casaccia, P., Roussos, P., & Zhang, B. (2021). Author Correction: Brain Cell Type Specific Gene Expression and Co-expression Network Architectures. Scientific Reports, 11(1), 19430. https://doi.org/10.1038/s41598-021-97284-6 Nur Hidayat, W., Suswanto, H., Wijaya Kristanto, C., Pramudya Wardhani, A., Hamdan, A., & Kartika Sari, R. (2020). The Effectiveness of Interactive Digital Evaluation Training for Improving Teacher Skills in the Covid-19 Pandemic Period. 2020 4th International Conference on Vocational Education and Training (ICOVET), 310–314. https://doi.org/10.1109/ICOVET50258.2020.9230070 Nur Ismiatun, A., Aditya, B., Andrisyah, A., Rissa Atika, A., & Permadi, A. (2021). Understanding the Characteristics of Early Childhood Teachers Candidates through Online Interactive Quizzing. ICLIQE 2021: Proceeding of The 5th International Conference on Learning Innovation and Quality Education, 1–5. https://doi.org/10.1145/3516875.3516928 Park, C., Kim, D., Cho, S., & Han, H.-J. (2019). Adoption of multimedia technology for learning and gender difference. Computers in Human Behavior, 92, 288–296. https://doi.org/10.1016/j.chb.2018.11.029 Richardson, M., Hunt, A., Hinds, J., Bragg, R., Fido, D., Petronzi, D., Barbett, L., Clitherow, T., & White, M. (2019). A Measure of Nature Connectedness for Children and Adults: Validation, Performance, and Insights. Sustainability, 11(12), 3250. https://doi.org/10.3390/su11123250 Rohde, A., Duensing, A., Dawczynski, C., Godemann, J., Lorkowski, S., & Brombach, C. (2019). An App to Improve Eating Habits of Adolescents and Young Adults (Challenge to Go): Systematic Development of a Theory-Based and Target Group–Adapted Mobile App Intervention. JMIR MHealth and UHealth, 7(8), e11575. https://doi.org/10.2196/11575 Salas-Rueda, R.-A., Salas-Rueda, É.-P., & Salas-Rueda, R.-D. (2020). Analysis and Design of the Web Game on Descriptive Statistics through the ADDIE Model, Data Science and Machine Learning. International Journal of Education in Mathematics, Science and Technology, 8(3), 245. https://doi.org/10.46328/ijemst.v8i3.759 Singal, A., Bansal, A., Chaudhary, P., Singh, H., & Patra, A. (2021). Anatomy education of medical and dental students during COVID-19 pandemic: A reality check. Surgical and Radiologic Anatomy, 43(4), 515–521. https://doi.org/10.1007/s00276-020-02615-3 Wang, D., Tai, P. W. L., & Gao, G. (2019). Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 18(5), 358–378. https://doi.org/10.1038/s41573-019-0012-9 Williamson, H., Hamlet, C., White, P., Marques, E. M. R., Paling, T., Cadogan, J., Perera, R., Rumsey, N., Hayward, L., & Harcourt, D. (2019). A Web-Based Self-Help Psychosocial Intervention for Adolescents Distressed by Appearance-Affecting Conditions and Injuries (Young Persons’ Face IT): Feasibility Study for a Parallel Randomized Controlled Trial. JMIR Mental Health, 6(11), e14776. https://doi.org/10.2196/14776 Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: Service robots in the frontline. Journal of Service Management, 29(5), 907–931. https://doi.org/10.1108/JOSM-04-2018-0119 Wolraich, M. L., Hagan, J. F., Allan, C., Chan, E., Davison, D., Earls, M., Evans, S. W., Flinn, S. K., Froehlich, T., Frost, J., Holbrook, J. R., Lehmann, C. U., Lessin, H. R., Okechukwu, K., Pierce, K. L., Winner, J. D., Zurhellen, W., & Subcommittee on Children and Adolescents with Attention-Deficit/Hyperactive Disorder. (2019). Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics, 144(4), e20192528. https://doi.org/10.1542/peds.2019-2528 Xiao, L. D., Harrington, A., Mavromaras, K., Ratcliffe, J., Mahuteau, S., Isherwood, L., & Gregoric, C. (2021). Care workers’ perspectives of factors affecting a sustainable aged care workforce. International Nursing Review, 68(1), 49–58. https://doi.org/10.1111/inr.12635 Xu, L. D., & Duan, L. (2019). Big data for cyber physical systems in industry 4.0: A survey. Enterprise Information Systems, 13(2), 148–169. https://doi.org/10.1080/17517575.2018.1442934 Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., Luo, T., Xu, L., Liao, G., Yan, M., Ping, Y., Li, F., Shi, A., Bai, J., Zhao, T., Li, X., & Xiao, Y. (2019). CellMarker: A manually curated resource of cell markers in human and mouse. Nucleic Acids Research, 47(D1), D721–D728. https://doi.org/10.1093/nar/gky900 Zhang, X., Yao, L., Dong, M., Liu, Z., Zhang, Y., & Li, Y. (2020). Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection. IEEE Journal of Biomedical and Health Informatics, 24(10), 2852–2859. https://doi.org/10.1109/JBHI.2020.2971610 Zhu, M., Sari, A. R., & Lee, M. M. (2020). A comprehensive systematic review of MOOC research: Research techniques, topics, and trends from 2009 to 2019. Educational Technology Research and Development, 68(4), 1685–1710. https://doi.org/10.1007/s11423-020-09798-x

DOI: https://doi.org/10.18860/ijazarabi.v6i3.21008


  • There are currently no refbacks.