AI Concepts Integration in Developing E-Muhadathat Kits For Non-Arabic Speakers

Siti Rahmah Borham, Saipolbarin Ramli, Mohammad Taufiq Abdul Ghani

Abstract


Recent educational reforms focus on strategically integrating technology into teaching, aligning with the principles of the fourth industrial revolution (IR 4.0). Among the swiftly evolving technologies in language learning is Artificial Intelligence (AI), particularly in the form of Natural Language Processing (NLP). This technology has been applied to create the E-Muhadathat kit, an interactive Arabic conversation simulation tool designed to enhance communication skills for non-Arabic speaking students in Malaysian public universities. This study aims to investigate the role of AI in education, address the challenges in developing AI-based Arabic language learning software, and propose a model for the E-Muhadathat kit tailored for non-Arabic speakers. This literature review uses documentary methods to gather information from journals, conference proceedings, articles, dissertations, and digital books from databases such as Google Scholar, Springer Link, Science Direct, and Research Gate. The collected data undergoes descriptive analysis based on thematic categorization. The findings indicate that the concept of AI consists of three core components: machine learning, deep learning, and neural networks. Arabic linguists have recognized several challenges in developing AI-based software, such as orthographic, morphological, syntactic, anaphoric, and semantic ambiguities. Moreover, the E-Muhadathat kit's design integrates machine learning and deep learning techniques, featuring applications for both spoken and written language. The study's findings support educators and researchers aiming to create Arabic language software tailored for non-native speakers in Malaysian higher education institutions. As a result, the study advocates for further investigation into the use of AI in Arabic language education to enhance the communication abilities of non-native speakers in Malaysia.

Keywords


Artificial Intelligence; Natural Language Processing; E-Muhadathat; Arabic; Teaching and Learning; Non-Arabic Speakers

Full Text:

PDF

References


Abdelghani, B. (2021). Uses of communicative and collaborative activities in e-learning: Moodle platform as a Model. Journal of Arabic Learning, 5(1), 234-248. https://ejournal.uin-malang.ac.id/index.php/ijazarabi/article/view/10923

Abdurrosid, H., & Mamluatul. (2021). Online model of teaching Arabic speaking skill in State Islamic Universities. Journal of Arabic Learning, 3(4), 677. http://ejournal.uin-malang.ac.id/index.php/ijazarabi/article/view/9202/8920

Abolohom, A., Omar, N., Pais, S., & Cordeiro, J. (2021). A comparative study of linguistics and computational features based on for machine learning for Arabic anaphora resolution. Procedia Computer Science, 189, 37-47.

Abu, A. T., Ahmad Rashid, R. A., & Saleh, S. (2020). Pembinaan modul pengajaran Al-Quran (Al-Alaq) menggunakan Model Instruksional ADDIE. International Journal of Civilizational Studies and Human Sciences. 3(3), 152-167.

Adel, M. A. (2022). Investing Artificial Intelligence for Arabic learning. Journal of Arabic Learning, 5(1), 234-248. https://ejournal.uin-malang.ac.id/index.php/ijazarabi/article/view/15814/9303

Ahmad, A. (2017). Mengenal Artificial Intelligence, Machine Learning, Neural Network dan Deep Learning. Yayasan Cahaya Islam, Jurnal Teknologi Indonesia, 1-5.

Almanna. A. & Jamoussi, R. (2022). NMT verb rendering: A cognitive approach to informing Arabic-into-English post-editing. Open Linguistics, 8(1), 310-327. doi: 10.1515/opli-2022-0192.

Almekhlafi, E., AL-Makhlafi, M., Zhang, E., Wang, J., & Peng, J. (2022). A classification benchmark for Arabic alphabet phonemes with diacritics in deep neural networks. Computer Speech & Language, 71. doi:10.1016/j.csl.2021.101274.

Almurayh. A. (2021). The challenges of using Arabic Chatbot in Saudi Universities. IAENG International Journal of Computer Science, 48(1).

Alwi, A., & Kamis, A. (2019). Using the ADDIE model to develop Green Skills teaching mdodule. Int. Journal of Engineering Research and Application, 9(1), 53-57.

Annisa, S., Lubis, Z., & Najmita, A. (2020). Perancangan aplikasi jaringan syaraf tiruan (Neural Network) untuk pedeteksi Keaslian Uang Kertas. Journal of Electrical Technology, 5(1), 1-8.

Anwar, M. R., & Ahyarudin, H.A. (2023). AI-powered Arabic language education in the era of society 5.0. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 5(1), 50-57.

Atoh, N., Ramli, S., & Awang Hamat, M. Z. (2014). Guru bahasa Arab yang berkualiti: Satu Tinjauan Awal. In. Arifin, Z., Ahmad, M., Zailani, S., Omar, L., Mat, M. Z., Osman, H., Mustapa, A. M., & Nasir, M. S. Prosiding Seminar Pengajaran & Pembelajaran Bahasa Arab 2014 (pp. 1-7). Fakulti Pengajian Islam UKM & Fakulti Kontemporari Islam, UNISZA.

Bakar, K. A., Asbulah, L. H., Soad, N. F. A. M., & Ahmad, M. F. (2023). International posture of Malaysian learners in Arabic programme. Journal of Arabic Learning, 6(3), 538-548. https://ejournal.uin-malang.ac.id/index.php/ijazarabi/article/view/23842/10690

Branch, R. (2014). Instructional design: The ADDIE approach (3th ed.) New York: Springer.

Cabral, A. (2023, August 30). Abu Dhabi-developed AI large language model for Arabic unveiled. BESHARA. https://www.thenationalnews.com/business/technology/2023/08/30/abu-dhabi-developed-ai-large-language-model-for-arabic-unveiled/

Elayeb, B., Ettih, M. F., & Ayed, R. (2022). Experimenting machine-learning algorithms for morphological disambiguation of Arabic texts. Proceeding of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022). 3, 851-862.

El-Haj, M., Rayson, P., Souza, E. D., Khallaf, N., & Habash, N. (2022). AraSAS: The open source Arabic semantic tagger. Proceeding of the OSCAT 2022Workshop @ LREC 2022. (pp.23-31). Marseille, France.

El Naqa, I., & Murphy, M. J. (2015). What is Machine Learning?. In. Machine Learning in Radiation Oncology. (pp. 3-11). doi:10.1007/978-3-319-18305-3_1

Elzayady, H., Mohamed, M., Badran, K., & Salama, G. (2022). Detecting Arabic textual threats in social media using artificial intelligence: An overview. Indonesian Journal of Electrical Engineering and Computer Science, 3(3). 1712-1722. doi:10.11591/ijeecs.v25.i3.

Ghani, M. T. A., & Daud, W. A. A. W. (2023). The impact of digital game-based learning towards Arabic language communication. Jurnal Komunikasi: Malaysian Journal of Communication, 39(1), 407-424. https://doi.org/10.17576/JKMJC-2023-3901-23

Jarrar, M., Zaraket, F., Asia, R., & Amayreh, H. (2018). Diacritic-Based Matching of Arabic Words. ACM Asian and Low-Resource Language Information Processing, 18(2), 1-21. doi:10.1145/3242177.

Khalati, M. M., & Al-Romany, T. A. H. (2020). Artificial Intelligence Development and Challenges (Arabic Language as a Model). International Journal of Innovation, Creativity and Change, 13(5), 916-926.

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1956). A proposal for the Dartmouth Summer Research Project on Artificial Intelligence. In AI Magazine. (pp. 12-14).

Muflihah, L. (2023). Al-zakā’ al-Istina’ī fi Khidmati Ta’līm al-Lughaṯ al-Arabaiyyaṯ li Ghayr al-Nātiqīna biha: Tahaddiyāt tuwājihuhā wa āfāq mubāsyaraṯ. Prosiding ICON-POSTAL, S2 Keguruan Bahasa UM, 1, 91-108.

Naik, A. (2020, 10 May). A contemporary introduction to Natural Language Processing (NLP) in 2020. The Startup.

Nasution, H. (2012). Implementasi Logika Fuzzy pada Sistem Kecerdasan Buatan. Jurnal ELKHA. 4(2), 4-8.

Nawi, A. (2019). Penerokaan awal terhadap isu dan impak penggunaan teknologi kecerdasan buatan terhadap kehidupan manusia. Asian Journal of Civilizational Studies, 1(4), 24–33.

Nazih, W. & Hifny, Y. (2022). Arabic syntactic diacritics restoration using BERT Models. Computational Intelligence and Neuroscience. 1, 1-8. doi: 10.1155/2022/3214255.

Obied, O., Inoue, G., & Habash, N. (2022). Camelira: An-Arabic multi-dialect morphological disambiguator. Computation and Language, 1-8. doi: 10.48550/ARXIV.2211.16807.

Othman, E., Shaalan, K. & Rafea, A. (2004). Towards resolving ambiguity in understanding Arabic sentence. Proceeding of International Conference on Arabic Language Resources and Tools. (pp. 118-122).

Ramli, S. Atoh, N., Zakaria, Z., & Ariffin, M. (2017). I-Kit bahasa Arab dalam kalangan pelajar ISM Bahasa Arab dengan Pendidikan UPSI: Satu Analisis. Journal of Global Business and Social Entreprenuership (GBSE), 3(7), 79-89.

Ramli, S., Ghani, M. T. A., & Hamat, M. Z. A., (2019). Media interaktif formula pola ayat kata kerjaan bahasa Arab untuk bukan penutur. International Journal of Humanities, Philosophy, Language, 2(5), 13-24.

Ramli, S. Ramli, N. F., Ghani, M. T. A., Daud, W. A. A. W., & Atoh, N. (2020). Collaborative learning to enhance Arabic speech skills among students of Bachelor’s Degree (ISM) in Arabic Language with Education at Sultan Idris Education University. Hamdard Islamicus, 43(S.2), 20-28.

Rayson, P., Archer, D., Piao, S., & McEnery. T. (2004). The UCREL semantic analysis system. Proceeding of the Beyond Named Entity Recognition Semantic Labeling for NLP Tasks Workshop. (pp. 1-6). Lisbon, Portugal.

Romli, T. R. M., Othman, M. Z., Abdullah, M. H., & Hamat, M. Z. A. (2018). Word classification in the online database of Malay-Arabic comparable phrases. International Journal of Academic Research in Progressive Education and Development, 7(4), 255-266.

Rossett, A. (1987). Training needs assessment. Englewood Cliffs: Educational Technology Publications.

Shaalan, K., Siddiqui, S., Alkhatib, M., & Monem, A. A. (2018). Challenges in Arabic Natural Language Processing. In. Computational Linguistics, Speech and Image Processing for Arabic Language. (pp. 59083). doi:10.1142/9789813229396_0003.

Shahrir, M. S. (2016, March 31). Kelebihan kuasai bahasa Arab. Berita Harian. https://www.researchgate.net/publication/299509634_Kelebihan_Kuasai_Bahasa_Arab_-_Berita_Harian_31_Mac_2016

Zakaria, Z. M., Mei, F. S. Y., Lambri, A., Yusuf, R., & Sukadari. (2019). The readiness of UPSI teacher trainees for Arabic language in the implementation of classroom-based assessment during teaching practice. International Journal of Psychosocial Rehabilitation, 24(6), 7109-7120.




DOI: https://doi.org/10.18860/ijazarabi.v7i3.26568

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Siti Rahmah Borham, Saipolbarin Ramli, Mohammad Taufiq Abdul Ghani

License URL: https://creativecommons.org/licenses/by-sa/4.0/